Cargando…

Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes

Inflammatory activation of glial cells promotes loss of dopaminergic neurons in Parkinson disease. The transcription factor nuclear factor κB (NF-κB) regulates the expression of multiple neuroinflammatory cytokines and chemokines in activated glial cells that are damaging to neurons. Thus, inhibitio...

Descripción completa

Detalles Bibliográficos
Autores principales: Popichak, Katriana A., Hammond, Sean L., Moreno, Julie A., Afzali, Maryam F., Backos, Donald S., Slayden, Richard D., Safe, Stephen, Tjalkens, Ronald B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Pharmacology and Experimental Therapeutics 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117504/
https://www.ncbi.nlm.nih.gov/pubmed/30111648
http://dx.doi.org/10.1124/mol.118.112631
_version_ 1783351773276143616
author Popichak, Katriana A.
Hammond, Sean L.
Moreno, Julie A.
Afzali, Maryam F.
Backos, Donald S.
Slayden, Richard D.
Safe, Stephen
Tjalkens, Ronald B.
author_facet Popichak, Katriana A.
Hammond, Sean L.
Moreno, Julie A.
Afzali, Maryam F.
Backos, Donald S.
Slayden, Richard D.
Safe, Stephen
Tjalkens, Ronald B.
author_sort Popichak, Katriana A.
collection PubMed
description Inflammatory activation of glial cells promotes loss of dopaminergic neurons in Parkinson disease. The transcription factor nuclear factor κB (NF-κB) regulates the expression of multiple neuroinflammatory cytokines and chemokines in activated glial cells that are damaging to neurons. Thus, inhibition of NF-κB signaling in glial cells could be a promising therapeutic strategy for the prevention of neuroinflammatory injury. Nuclear orphan receptors in the NR4A family, including NR4A1 (Nur77) and NR4A2 (Nurr1), can inhibit the inflammatory effects of NF-κB, but no approved drugs target these receptors. Therefore, we postulated that a recently developed NR4A receptor ligand, 1,1bis (3′indolyl) 1(pmethoxyphenyl) methane (C-DIM5), would suppress NF-κB-dependent inflammatory gene expression in astrocytes after treatment with 1-methyl-4-phenyl 1, 2, 3, 6-tetrahydropyridine (MPTP) and the inflammatory cytokines interferon γ and tumor necrosis factor α. C-DIM5 increased expression of Nur77 mRNA and suppressed expression of multiple neuroinflammatory genes. C-DIM5 also inhibited the expression of NFκB-regulated inflammatory and apoptotic genes in quantitative polymerase chain reaction array studies and effected p65 binding to unique genes in chromatin immunoprecipitation next-generation sequencing experiments but did not prevent p65 translocation to the nucleus, suggesting a nuclear-specific mechanism. C-DIM5 prevented nuclear export of Nur77 in astrocytes induced by MPTP treatment and simultaneously recruited Nurr1 to the nucleus, consistent with known transrepressive properties of this receptor. Combined RNAi knockdown of Nur77 and Nurr1 inhibited the anti-inflammatory activity of C-DIM5, demonstrating that C-DIM5 requires these receptors to inhibit NF-κB. Collectively, these data demonstrate that NR4A1/Nur77 and NR4A2/Nurr1 dynamically regulated inflammatory gene expression in glia by modulating the transcriptional activity of NF-κB.
format Online
Article
Text
id pubmed-6117504
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The American Society for Pharmacology and Experimental Therapeutics
record_format MEDLINE/PubMed
spelling pubmed-61175042018-10-01 Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes Popichak, Katriana A. Hammond, Sean L. Moreno, Julie A. Afzali, Maryam F. Backos, Donald S. Slayden, Richard D. Safe, Stephen Tjalkens, Ronald B. Mol Pharmacol Articles Inflammatory activation of glial cells promotes loss of dopaminergic neurons in Parkinson disease. The transcription factor nuclear factor κB (NF-κB) regulates the expression of multiple neuroinflammatory cytokines and chemokines in activated glial cells that are damaging to neurons. Thus, inhibition of NF-κB signaling in glial cells could be a promising therapeutic strategy for the prevention of neuroinflammatory injury. Nuclear orphan receptors in the NR4A family, including NR4A1 (Nur77) and NR4A2 (Nurr1), can inhibit the inflammatory effects of NF-κB, but no approved drugs target these receptors. Therefore, we postulated that a recently developed NR4A receptor ligand, 1,1bis (3′indolyl) 1(pmethoxyphenyl) methane (C-DIM5), would suppress NF-κB-dependent inflammatory gene expression in astrocytes after treatment with 1-methyl-4-phenyl 1, 2, 3, 6-tetrahydropyridine (MPTP) and the inflammatory cytokines interferon γ and tumor necrosis factor α. C-DIM5 increased expression of Nur77 mRNA and suppressed expression of multiple neuroinflammatory genes. C-DIM5 also inhibited the expression of NFκB-regulated inflammatory and apoptotic genes in quantitative polymerase chain reaction array studies and effected p65 binding to unique genes in chromatin immunoprecipitation next-generation sequencing experiments but did not prevent p65 translocation to the nucleus, suggesting a nuclear-specific mechanism. C-DIM5 prevented nuclear export of Nur77 in astrocytes induced by MPTP treatment and simultaneously recruited Nurr1 to the nucleus, consistent with known transrepressive properties of this receptor. Combined RNAi knockdown of Nur77 and Nurr1 inhibited the anti-inflammatory activity of C-DIM5, demonstrating that C-DIM5 requires these receptors to inhibit NF-κB. Collectively, these data demonstrate that NR4A1/Nur77 and NR4A2/Nurr1 dynamically regulated inflammatory gene expression in glia by modulating the transcriptional activity of NF-κB. The American Society for Pharmacology and Experimental Therapeutics 2018-10 2018-10 /pmc/articles/PMC6117504/ /pubmed/30111648 http://dx.doi.org/10.1124/mol.118.112631 Text en Copyright © 2018 by The Author(s) http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed under the CC BY-NC Attribution 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Articles
Popichak, Katriana A.
Hammond, Sean L.
Moreno, Julie A.
Afzali, Maryam F.
Backos, Donald S.
Slayden, Richard D.
Safe, Stephen
Tjalkens, Ronald B.
Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes
title Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes
title_full Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes
title_fullStr Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes
title_full_unstemmed Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes
title_short Compensatory Expression of Nur77 and Nurr1 Regulates NF-κB–Dependent Inflammatory Signaling in Astrocytes
title_sort compensatory expression of nur77 and nurr1 regulates nf-κb–dependent inflammatory signaling in astrocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117504/
https://www.ncbi.nlm.nih.gov/pubmed/30111648
http://dx.doi.org/10.1124/mol.118.112631
work_keys_str_mv AT popichakkatrianaa compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT hammondseanl compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT morenojuliea compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT afzalimaryamf compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT backosdonalds compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT slaydenrichardd compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT safestephen compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes
AT tjalkensronaldb compensatoryexpressionofnur77andnurr1regulatesnfkbdependentinflammatorysignalinginastrocytes