Cargando…
Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics
Quantitative prediction of the magnitude of transporter‐mediated clinical drug‐drug interactions (DDIs) solely from in vitro inhibition data remains challenging. The objective of the present work was to analyze the kinetic profile of an endogenous biomarker for organic anion‐transporting polypeptide...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118294/ https://www.ncbi.nlm.nih.gov/pubmed/29924471 http://dx.doi.org/10.1002/psp4.12315 |
_version_ | 1783351904095436800 |
---|---|
author | Yoshida, Kenta Guo, Cen Sane, Rucha |
author_facet | Yoshida, Kenta Guo, Cen Sane, Rucha |
author_sort | Yoshida, Kenta |
collection | PubMed |
description | Quantitative prediction of the magnitude of transporter‐mediated clinical drug‐drug interactions (DDIs) solely from in vitro inhibition data remains challenging. The objective of the present work was to analyze the kinetic profile of an endogenous biomarker for organic anion‐transporting polypeptides 1B (OATP1B), coproporphyrin I (CPI), and to predict clinical DDIs with a probe OATP1B substrate (pravastatin) based on “in vivo” inhibition constants (K(i)). The CPI kinetics in the presence and absence of strong and weak OATP1B inhibitors (rifampin and GDC‐0810) were described well with a one‐compartment model, and in vivo K(i) were estimated. Clinical DDIs between pravastatin and these inhibitors were predicted using physiologically based pharmacokinetic (PBPK) models coupled with the estimated in vivo K(i) and predicted magnitude matched well with the observed DDIs. In conclusion, model‐based analysis of the CPI profile has the potential to quantitatively predict liability of a new molecular entity (NME) as an OATP1B inhibitor early in drug development. |
format | Online Article Text |
id | pubmed-6118294 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61182942018-09-04 Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics Yoshida, Kenta Guo, Cen Sane, Rucha CPT Pharmacometrics Syst Pharmacol Research Quantitative prediction of the magnitude of transporter‐mediated clinical drug‐drug interactions (DDIs) solely from in vitro inhibition data remains challenging. The objective of the present work was to analyze the kinetic profile of an endogenous biomarker for organic anion‐transporting polypeptides 1B (OATP1B), coproporphyrin I (CPI), and to predict clinical DDIs with a probe OATP1B substrate (pravastatin) based on “in vivo” inhibition constants (K(i)). The CPI kinetics in the presence and absence of strong and weak OATP1B inhibitors (rifampin and GDC‐0810) were described well with a one‐compartment model, and in vivo K(i) were estimated. Clinical DDIs between pravastatin and these inhibitors were predicted using physiologically based pharmacokinetic (PBPK) models coupled with the estimated in vivo K(i) and predicted magnitude matched well with the observed DDIs. In conclusion, model‐based analysis of the CPI profile has the potential to quantitatively predict liability of a new molecular entity (NME) as an OATP1B inhibitor early in drug development. John Wiley and Sons Inc. 2018-08-23 2018-08 /pmc/articles/PMC6118294/ /pubmed/29924471 http://dx.doi.org/10.1002/psp4.12315 Text en © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Yoshida, Kenta Guo, Cen Sane, Rucha Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics |
title | Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics |
title_full | Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics |
title_fullStr | Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics |
title_full_unstemmed | Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics |
title_short | Quantitative Prediction of OATP‐Mediated Drug‐Drug Interactions With Model‐Based Analysis of Endogenous Biomarker Kinetics |
title_sort | quantitative prediction of oatp‐mediated drug‐drug interactions with model‐based analysis of endogenous biomarker kinetics |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118294/ https://www.ncbi.nlm.nih.gov/pubmed/29924471 http://dx.doi.org/10.1002/psp4.12315 |
work_keys_str_mv | AT yoshidakenta quantitativepredictionofoatpmediateddrugdruginteractionswithmodelbasedanalysisofendogenousbiomarkerkinetics AT guocen quantitativepredictionofoatpmediateddrugdruginteractionswithmodelbasedanalysisofendogenousbiomarkerkinetics AT sanerucha quantitativepredictionofoatpmediateddrugdruginteractionswithmodelbasedanalysisofendogenousbiomarkerkinetics |