Cargando…

Encoding canonical DNA quadruplex structure

The main challenge in DNA quadruplex design is to encode a three-dimensional structure into the primary sequence, despite its multiple, repetitive guanine segments. We identify and detail structural elements describing all 14 feasible canonical quadruplex scaffolds and demonstrate their use in contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Dvorkin, Scarlett A., Karsisiotis, Andreas I., Webba da Silva, Mateus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118410/
https://www.ncbi.nlm.nih.gov/pubmed/30182059
http://dx.doi.org/10.1126/sciadv.aat3007
_version_ 1783351925953003520
author Dvorkin, Scarlett A.
Karsisiotis, Andreas I.
Webba da Silva, Mateus
author_facet Dvorkin, Scarlett A.
Karsisiotis, Andreas I.
Webba da Silva, Mateus
author_sort Dvorkin, Scarlett A.
collection PubMed
description The main challenge in DNA quadruplex design is to encode a three-dimensional structure into the primary sequence, despite its multiple, repetitive guanine segments. We identify and detail structural elements describing all 14 feasible canonical quadruplex scaffolds and demonstrate their use in control of design. This work outlines a new roadmap for implementation of targeted design of quadruplexes for material, biotechnological, and therapeutic applications.
format Online
Article
Text
id pubmed-6118410
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-61184102018-09-04 Encoding canonical DNA quadruplex structure Dvorkin, Scarlett A. Karsisiotis, Andreas I. Webba da Silva, Mateus Sci Adv Research Articles The main challenge in DNA quadruplex design is to encode a three-dimensional structure into the primary sequence, despite its multiple, repetitive guanine segments. We identify and detail structural elements describing all 14 feasible canonical quadruplex scaffolds and demonstrate their use in control of design. This work outlines a new roadmap for implementation of targeted design of quadruplexes for material, biotechnological, and therapeutic applications. American Association for the Advancement of Science 2018-08-31 /pmc/articles/PMC6118410/ /pubmed/30182059 http://dx.doi.org/10.1126/sciadv.aat3007 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Dvorkin, Scarlett A.
Karsisiotis, Andreas I.
Webba da Silva, Mateus
Encoding canonical DNA quadruplex structure
title Encoding canonical DNA quadruplex structure
title_full Encoding canonical DNA quadruplex structure
title_fullStr Encoding canonical DNA quadruplex structure
title_full_unstemmed Encoding canonical DNA quadruplex structure
title_short Encoding canonical DNA quadruplex structure
title_sort encoding canonical dna quadruplex structure
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118410/
https://www.ncbi.nlm.nih.gov/pubmed/30182059
http://dx.doi.org/10.1126/sciadv.aat3007
work_keys_str_mv AT dvorkinscarletta encodingcanonicaldnaquadruplexstructure
AT karsisiotisandreasi encodingcanonicaldnaquadruplexstructure
AT webbadasilvamateus encodingcanonicaldnaquadruplexstructure