Cargando…

Novel recombinant feline interferon carrying N-glycans with reduced allergy risk produced by a transgenic silkworm system

BACKGROUND: The generation of recombinant proteins for commercialisation must be cost-effective. Despite the cost-effective production of recombinant feline interferon (rFeIFN) by a baculovirus expression system, this rFeIFN carries insect-type N-glycans, with core α 1,3 fucosyl residues that act as...

Descripción completa

Detalles Bibliográficos
Autores principales: Minagawa, Sachi, Nakaso, Yuzuru, Tomita, Masahiro, Igarashi, Takenori, Miura, Yoshio, Yasuda, Hideyo, Sekiguchi, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119277/
https://www.ncbi.nlm.nih.gov/pubmed/30170576
http://dx.doi.org/10.1186/s12917-018-1584-z
Descripción
Sumario:BACKGROUND: The generation of recombinant proteins for commercialisation must be cost-effective. Despite the cost-effective production of recombinant feline interferon (rFeIFN) by a baculovirus expression system, this rFeIFN carries insect-type N-glycans, with core α 1,3 fucosyl residues that act as potential allergens. An alternative method of production may yield recombinant glycoproteins with reduced antigenicity. RESULTS: A cDNA clone encoding the fifteenth subtype of FeIFN-α (FeIFN-α15) was isolated from a Japanese domestic cat. This clone encoded a protein of 189 amino acids with a molecular mass of 21.1 kDa. The rFeIFN-α15 was expressed using a transgenic silkworm system, which was expected to yield an N-glycan structure with reduced antigenicity compared with the protein produced by the baculovirus system. The resulting rFeIFN-α15 accumulated in the sericin layer of silk fibres and was easily extracted and purified by column chromatography. The N-terminal amino acid sequence of purified rFeIFN-α15 was identical to the mature form of natural sequence. Moreover, its N-glycans did not include detectable core α 1,3 fucosyl residues. Its anti-vesicular stomatitis virus activity (2.6 × 10(8) units/mg protein) was comparable to that of the baculovirus-expressed rFeIFN. CONCLUSIONS: The lower allergy risk of rFeIFN produced by the transgenic silkworm system than by the baculovirus expression system is due to the former lacking core α 1,3 fucosyl residues in its N-glycans. The rFeIFN-α15 produced by the transgenic silkworm system may be a prospective candidate for the next generation of rFeIFN in veterinary medicine.