Cargando…
Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice
BACKGROUND: The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119295/ https://www.ncbi.nlm.nih.gov/pubmed/29635340 http://dx.doi.org/10.1093/ijnp/pyy034 |
_version_ | 1783352061689069568 |
---|---|
author | Dunn, Amelia D Reed, Brian Guariglia, Catherine Dunn, Alexandra M Hillman, Joshua M Kreek, Mary Jeanne |
author_facet | Dunn, Amelia D Reed, Brian Guariglia, Catherine Dunn, Alexandra M Hillman, Joshua M Kreek, Mary Jeanne |
author_sort | Dunn, Amelia D |
collection | PubMed |
description | BACKGROUND: The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigations have profiled the in vivo effects of compounds biased towards G-protein-mediated signaling, with less potent arrestin-mediated signaling. The compounds studied here derive from a series of trialkylamines: N-substituted-N- phenylethyl-N-3-hydroxyphenylethyl-amine, with N-substituents including n-butyl (BPHA), methylcyclobutyl (MCBPHA), and methylcyclopentyl (MCPPHA). METHODS: BPHA, MCBPHA, and MCPPHA were characterized in vitro in a kappa opioid receptor-expressing cell line in binding assays and functional assays. We also tested the compounds in C57BL6 mice, assaying incoordination with rotarod, as well as circulating levels of the neuroendocrine kappa opioid receptor biomarker, prolactin. RESULTS: BPHA, MCBPHA, and MCPPHA showed full kappa opioid receptor agonism for G-protein coupling compared with the reference compound U69,593. BPHA showed no measurable β-arrestin-2 recruitment, indicating that it is extremely G-protein biased. MCBPHA and MCPPHA, however, showed submaximal efficacy for recruiting β-arrestin-2. Studies in C57BL6 mice reveal that all compounds stimulate release of prolactin, consistent with dependence on G-protein signaling. MCBPHA and MCPPHA result in rotarod incoordination, whereas BPHA does not, consistent with the reported requirement of intact kappa opioid receptor/β-arrestin-2 mediated coupling for kappa opioid receptor agonist-induced rotarod incoordination. CONCLUSIONS: BPHA, MCBPHA, and MCPPHA are thus novel differentially G-protein-biased kappa opioid receptor agonists. They can be used to investigate how signaling pathways mediate kappa opioid receptor effects in vitro and in vivo and to explore the effects of candidate kappa opioid receptor-targeted pharmacotherapeutics. |
format | Online Article Text |
id | pubmed-6119295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61192952018-09-05 Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice Dunn, Amelia D Reed, Brian Guariglia, Catherine Dunn, Alexandra M Hillman, Joshua M Kreek, Mary Jeanne Int J Neuropsychopharmacol Regular Research Articles BACKGROUND: The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigations have profiled the in vivo effects of compounds biased towards G-protein-mediated signaling, with less potent arrestin-mediated signaling. The compounds studied here derive from a series of trialkylamines: N-substituted-N- phenylethyl-N-3-hydroxyphenylethyl-amine, with N-substituents including n-butyl (BPHA), methylcyclobutyl (MCBPHA), and methylcyclopentyl (MCPPHA). METHODS: BPHA, MCBPHA, and MCPPHA were characterized in vitro in a kappa opioid receptor-expressing cell line in binding assays and functional assays. We also tested the compounds in C57BL6 mice, assaying incoordination with rotarod, as well as circulating levels of the neuroendocrine kappa opioid receptor biomarker, prolactin. RESULTS: BPHA, MCBPHA, and MCPPHA showed full kappa opioid receptor agonism for G-protein coupling compared with the reference compound U69,593. BPHA showed no measurable β-arrestin-2 recruitment, indicating that it is extremely G-protein biased. MCBPHA and MCPPHA, however, showed submaximal efficacy for recruiting β-arrestin-2. Studies in C57BL6 mice reveal that all compounds stimulate release of prolactin, consistent with dependence on G-protein signaling. MCBPHA and MCPPHA result in rotarod incoordination, whereas BPHA does not, consistent with the reported requirement of intact kappa opioid receptor/β-arrestin-2 mediated coupling for kappa opioid receptor agonist-induced rotarod incoordination. CONCLUSIONS: BPHA, MCBPHA, and MCPPHA are thus novel differentially G-protein-biased kappa opioid receptor agonists. They can be used to investigate how signaling pathways mediate kappa opioid receptor effects in vitro and in vivo and to explore the effects of candidate kappa opioid receptor-targeted pharmacotherapeutics. Oxford University Press 2018-04-04 /pmc/articles/PMC6119295/ /pubmed/29635340 http://dx.doi.org/10.1093/ijnp/pyy034 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of CINP. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Regular Research Articles Dunn, Amelia D Reed, Brian Guariglia, Catherine Dunn, Alexandra M Hillman, Joshua M Kreek, Mary Jeanne Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice |
title | Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice |
title_full | Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice |
title_fullStr | Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice |
title_full_unstemmed | Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice |
title_short | Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice |
title_sort | structurally related kappa opioid receptor agonists with substantial differential signaling bias: neuroendocrine and behavioral effects in c57bl6 mice |
topic | Regular Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119295/ https://www.ncbi.nlm.nih.gov/pubmed/29635340 http://dx.doi.org/10.1093/ijnp/pyy034 |
work_keys_str_mv | AT dunnameliad structurallyrelatedkappaopioidreceptoragonistswithsubstantialdifferentialsignalingbiasneuroendocrineandbehavioraleffectsinc57bl6mice AT reedbrian structurallyrelatedkappaopioidreceptoragonistswithsubstantialdifferentialsignalingbiasneuroendocrineandbehavioraleffectsinc57bl6mice AT guarigliacatherine structurallyrelatedkappaopioidreceptoragonistswithsubstantialdifferentialsignalingbiasneuroendocrineandbehavioraleffectsinc57bl6mice AT dunnalexandram structurallyrelatedkappaopioidreceptoragonistswithsubstantialdifferentialsignalingbiasneuroendocrineandbehavioraleffectsinc57bl6mice AT hillmanjoshuam structurallyrelatedkappaopioidreceptoragonistswithsubstantialdifferentialsignalingbiasneuroendocrineandbehavioraleffectsinc57bl6mice AT kreekmaryjeanne structurallyrelatedkappaopioidreceptoragonistswithsubstantialdifferentialsignalingbiasneuroendocrineandbehavioraleffectsinc57bl6mice |