Cargando…

Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs

African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distin...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva Pereira, Sara, Casas-Sánchez, Aitor, Haines, Lee R., Ogugo, Moses, Absolomon, Kihara, Sanders, Mandy, Kemp, Steve, Acosta-Serrano, Álvaro, Noyes, Harry, Berriman, Matthew, Jackson, Andrew P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120623/
https://www.ncbi.nlm.nih.gov/pubmed/30006414
http://dx.doi.org/10.1101/gr.234146.118
_version_ 1783352308470382592
author Silva Pereira, Sara
Casas-Sánchez, Aitor
Haines, Lee R.
Ogugo, Moses
Absolomon, Kihara
Sanders, Mandy
Kemp, Steve
Acosta-Serrano, Álvaro
Noyes, Harry
Berriman, Matthew
Jackson, Andrew P.
author_facet Silva Pereira, Sara
Casas-Sánchez, Aitor
Haines, Lee R.
Ogugo, Moses
Absolomon, Kihara
Sanders, Mandy
Kemp, Steve
Acosta-Serrano, Álvaro
Noyes, Harry
Berriman, Matthew
Jackson, Andrew P.
author_sort Silva Pereira, Sara
collection PubMed
description African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales.
format Online
Article
Text
id pubmed-6120623
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-61206232018-09-05 Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs Silva Pereira, Sara Casas-Sánchez, Aitor Haines, Lee R. Ogugo, Moses Absolomon, Kihara Sanders, Mandy Kemp, Steve Acosta-Serrano, Álvaro Noyes, Harry Berriman, Matthew Jackson, Andrew P. Genome Res Method African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales. Cold Spring Harbor Laboratory Press 2018-09 /pmc/articles/PMC6120623/ /pubmed/30006414 http://dx.doi.org/10.1101/gr.234146.118 Text en © 2018 Silva Pereira et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
spellingShingle Method
Silva Pereira, Sara
Casas-Sánchez, Aitor
Haines, Lee R.
Ogugo, Moses
Absolomon, Kihara
Sanders, Mandy
Kemp, Steve
Acosta-Serrano, Álvaro
Noyes, Harry
Berriman, Matthew
Jackson, Andrew P.
Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
title Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
title_full Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
title_fullStr Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
title_full_unstemmed Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
title_short Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
title_sort variant antigen repertoires in trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120623/
https://www.ncbi.nlm.nih.gov/pubmed/30006414
http://dx.doi.org/10.1101/gr.234146.118
work_keys_str_mv AT silvapereirasara variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT casassanchezaitor variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT hainesleer variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT ogugomoses variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT absolomonkihara variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT sandersmandy variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT kempsteve variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT acostaserranoalvaro variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT noyesharry variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT berrimanmatthew variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs
AT jacksonandrewp variantantigenrepertoiresintrypanosomacongolensepopulationsandexperimentalinfectionscanbeprofiledfromdeepsequencedatausinguniversalproteinmotifs