Cargando…

Selective cold pain inhibition by targeted block of TRPM8-expressing neurons with quaternary lidocaine derivative QX-314

Treatment of pain with local anesthetics leads to an unfavorable decrease in general sensory acuity due to their indiscriminate block of both pain sensing (nociceptors) and non-pain sensing nerves. However, the cell impermeant lidocaine derivative QX-314 can be selectively targeted to only nocicepto...

Descripción completa

Detalles Bibliográficos
Autores principales: Ongun, Serra, Sarkisian, Angela, McKemy, David D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123689/
https://www.ncbi.nlm.nih.gov/pubmed/30271936
http://dx.doi.org/10.1038/s42003-018-0062-2
Descripción
Sumario:Treatment of pain with local anesthetics leads to an unfavorable decrease in general sensory acuity due to their indiscriminate block of both pain sensing (nociceptors) and non-pain sensing nerves. However, the cell impermeant lidocaine derivative QX-314 can be selectively targeted to only nociceptors by permeation through ligand-gated cation channels. Here we show that localized injection of QX-314 with agonists for the menthol receptor TRPM8 specifically blocks cold-evoked behaviors in mice, including cold allodynia and hyperalgesia. Remarkably, cooling stimuli also promotes QX-314-mediated inhibition of cold behaviors, and can be used to block cold allodynia, while retaining relatively normal cold sensation. The effects of both agonist and thermally evoked uptake of QX-314 are TRPM8-dependent, results demonstrating an effective approach to treat localized cold pain without altering general somatosensation.