Cargando…
A conserved loop–wedge motif moderates reaction site search and recognition by FEN1
DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125683/ https://www.ncbi.nlm.nih.gov/pubmed/29878258 http://dx.doi.org/10.1093/nar/gky506 |
_version_ | 1783353207332798464 |
---|---|
author | Thompson, Mark J Gotham, Victoria J B Ciani, Barbara Grasby, Jane A |
author_facet | Thompson, Mark J Gotham, Victoria J B Ciani, Barbara Grasby, Jane A |
author_sort | Thompson, Mark J |
collection | PubMed |
description | DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognize opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3′-terminus of a primer strand, which is recognized by breaking the terminal base pair to generate a substrate with a single nucleotide 3′-flap. This recognition event allosterically signals hydrolytic removal of the 5′-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved ‘wedge’ residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated ‘loop–wedge’ mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognize irregular DNA structures. These new findings reveal how FEN1 precisely couples 3′-flap verification to function. |
format | Online Article Text |
id | pubmed-6125683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61256832018-09-11 A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 Thompson, Mark J Gotham, Victoria J B Ciani, Barbara Grasby, Jane A Nucleic Acids Res Nucleic Acid Enzymes DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognize opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3′-terminus of a primer strand, which is recognized by breaking the terminal base pair to generate a substrate with a single nucleotide 3′-flap. This recognition event allosterically signals hydrolytic removal of the 5′-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved ‘wedge’ residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated ‘loop–wedge’ mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognize irregular DNA structures. These new findings reveal how FEN1 precisely couples 3′-flap verification to function. Oxford University Press 2018-09-06 2018-06-07 /pmc/articles/PMC6125683/ /pubmed/29878258 http://dx.doi.org/10.1093/nar/gky506 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nucleic Acid Enzymes Thompson, Mark J Gotham, Victoria J B Ciani, Barbara Grasby, Jane A A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 |
title | A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 |
title_full | A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 |
title_fullStr | A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 |
title_full_unstemmed | A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 |
title_short | A conserved loop–wedge motif moderates reaction site search and recognition by FEN1 |
title_sort | conserved loop–wedge motif moderates reaction site search and recognition by fen1 |
topic | Nucleic Acid Enzymes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125683/ https://www.ncbi.nlm.nih.gov/pubmed/29878258 http://dx.doi.org/10.1093/nar/gky506 |
work_keys_str_mv | AT thompsonmarkj aconservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT gothamvictoriajb aconservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT cianibarbara aconservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT grasbyjanea aconservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT thompsonmarkj conservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT gothamvictoriajb conservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT cianibarbara conservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 AT grasbyjanea conservedloopwedgemotifmoderatesreactionsitesearchandrecognitionbyfen1 |