Cargando…

Cellular function given parametric variation in the Hodgkin and Huxley model of excitability

How is reliable physiological function maintained in cells despite considerable variability in the values of key parameters of multiple interacting processes that govern that function? Here, we use the classic Hodgkin–Huxley formulation of the squid giant axon action potential to propose a possible...

Descripción completa

Detalles Bibliográficos
Autores principales: Ori, Hillel, Marder, Eve, Marom, Shimon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126753/
https://www.ncbi.nlm.nih.gov/pubmed/30111538
http://dx.doi.org/10.1073/pnas.1808552115
Descripción
Sumario:How is reliable physiological function maintained in cells despite considerable variability in the values of key parameters of multiple interacting processes that govern that function? Here, we use the classic Hodgkin–Huxley formulation of the squid giant axon action potential to propose a possible approach to this problem. Although the full Hodgkin–Huxley model is very sensitive to fluctuations that independently occur in its many parameters, the outcome is in fact determined by simple combinations of these parameters along two physiological dimensions: structural and kinetic (denoted S and K, respectively). Structural parameters describe the properties of the cell, including its capacitance and the densities of its ion channels. Kinetic parameters are those that describe the opening and closing of the voltage-dependent conductances. The impacts of parametric fluctuations on the dynamics of the system—seemingly complex in the high-dimensional representation of the Hodgkin–Huxley model—are tractable when examined within the S–K plane. We demonstrate that slow inactivation, a ubiquitous activity-dependent feature of ionic channels, is a powerful local homeostatic control mechanism that stabilizes excitability amid changes in structural and kinetic parameters.