Cargando…

Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes

A variety of biological networks can be modeled as logical or Boolean networks. However, a simplification of the reality to binary states of the nodes does not ease the difficulty of analyzing the dynamics of large, complex networks, such as signal transduction networks, due to the exponential depen...

Descripción completa

Detalles Bibliográficos
Autores principales: Pentzien, Trevor, Puniya, Bhanwar L., Helikar, Tomáš, Matache, Mihaela T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127445/
https://www.ncbi.nlm.nih.gov/pubmed/30233390
http://dx.doi.org/10.3389/fphys.2018.01185
_version_ 1783353478837436416
author Pentzien, Trevor
Puniya, Bhanwar L.
Helikar, Tomáš
Matache, Mihaela T.
author_facet Pentzien, Trevor
Puniya, Bhanwar L.
Helikar, Tomáš
Matache, Mihaela T.
author_sort Pentzien, Trevor
collection PubMed
description A variety of biological networks can be modeled as logical or Boolean networks. However, a simplification of the reality to binary states of the nodes does not ease the difficulty of analyzing the dynamics of large, complex networks, such as signal transduction networks, due to the exponential dependence of the state space on the number of nodes. This paper considers a recently introduced method for finding a fairly small subnetwork, representing a collection of nodes that determine the states of most other nodes with a reasonable level of entropy. The subnetwork contains the most determinative nodes that yield the highest information gain. One of the goals of this paper is to propose an algorithm for finding a suitable subnetwork size. The information gain is quantified by the so-called determinative power of the nodes, which is obtained via the mutual information, a concept originating in information theory. We find the most determinative nodes for 36 network models available in the online database Cell Collective (http://cellcollective.org). We provide statistical information that indicates a weak correlation between the subnetwork size and other variables, such as network size, or maximum and average determinative power of nodes. We observe that the proportion represented by the subnetwork in comparison to the whole network shows a weak tendency to decrease for larger networks. The determinative power of nodes is weakly correlated to the number of outputs of a node, and it appears to be independent of other topological measures such as closeness or betweenness centrality. Once the subnetwork of the most determinative nodes is identified, we generate a biological function analysis of its nodes for some of the 36 networks. The analysis shows that a large fraction of the most determinative nodes are essential and involved in crucial biological functions. The biological pathway analysis of the most determinative nodes shows that they are involved in important disease pathways.
format Online
Article
Text
id pubmed-6127445
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61274452018-09-19 Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes Pentzien, Trevor Puniya, Bhanwar L. Helikar, Tomáš Matache, Mihaela T. Front Physiol Physiology A variety of biological networks can be modeled as logical or Boolean networks. However, a simplification of the reality to binary states of the nodes does not ease the difficulty of analyzing the dynamics of large, complex networks, such as signal transduction networks, due to the exponential dependence of the state space on the number of nodes. This paper considers a recently introduced method for finding a fairly small subnetwork, representing a collection of nodes that determine the states of most other nodes with a reasonable level of entropy. The subnetwork contains the most determinative nodes that yield the highest information gain. One of the goals of this paper is to propose an algorithm for finding a suitable subnetwork size. The information gain is quantified by the so-called determinative power of the nodes, which is obtained via the mutual information, a concept originating in information theory. We find the most determinative nodes for 36 network models available in the online database Cell Collective (http://cellcollective.org). We provide statistical information that indicates a weak correlation between the subnetwork size and other variables, such as network size, or maximum and average determinative power of nodes. We observe that the proportion represented by the subnetwork in comparison to the whole network shows a weak tendency to decrease for larger networks. The determinative power of nodes is weakly correlated to the number of outputs of a node, and it appears to be independent of other topological measures such as closeness or betweenness centrality. Once the subnetwork of the most determinative nodes is identified, we generate a biological function analysis of its nodes for some of the 36 networks. The analysis shows that a large fraction of the most determinative nodes are essential and involved in crucial biological functions. The biological pathway analysis of the most determinative nodes shows that they are involved in important disease pathways. Frontiers Media S.A. 2018-08-31 /pmc/articles/PMC6127445/ /pubmed/30233390 http://dx.doi.org/10.3389/fphys.2018.01185 Text en Copyright © 2018 Pentzien, Puniya, Helikar and Matache. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Pentzien, Trevor
Puniya, Bhanwar L.
Helikar, Tomáš
Matache, Mihaela T.
Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes
title Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes
title_full Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes
title_fullStr Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes
title_full_unstemmed Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes
title_short Identification of Biologically Essential Nodes via Determinative Power in Logical Models of Cellular Processes
title_sort identification of biologically essential nodes via determinative power in logical models of cellular processes
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127445/
https://www.ncbi.nlm.nih.gov/pubmed/30233390
http://dx.doi.org/10.3389/fphys.2018.01185
work_keys_str_mv AT pentzientrevor identificationofbiologicallyessentialnodesviadeterminativepowerinlogicalmodelsofcellularprocesses
AT puniyabhanwarl identificationofbiologicallyessentialnodesviadeterminativepowerinlogicalmodelsofcellularprocesses
AT helikartomas identificationofbiologicallyessentialnodesviadeterminativepowerinlogicalmodelsofcellularprocesses
AT matachemihaelat identificationofbiologicallyessentialnodesviadeterminativepowerinlogicalmodelsofcellularprocesses