Cargando…

Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes

Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferguson, Gabriel B., Van Handel, Ben, Bay, Maxwell, Fiziev, Petko, Org, Tonis, Lee, Siyoung, Shkhyan, Ruzanna, Banks, Nicholas W., Scheinberg, Mila, Wu, Ling, Saitta, Biagio, Elphingstone, Joseph, Larson, A. Noelle, Riester, Scott M., Pyle, April D., Bernthal, Nicholas M., Mikkola, Hanna KA, Ernst, Jason, van Wijnen, Andre J., Bonaguidi, Michael, Evseenko, Denis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128860/
https://www.ncbi.nlm.nih.gov/pubmed/30194383
http://dx.doi.org/10.1038/s41467-018-05573-y
_version_ 1783353709452853248
author Ferguson, Gabriel B.
Van Handel, Ben
Bay, Maxwell
Fiziev, Petko
Org, Tonis
Lee, Siyoung
Shkhyan, Ruzanna
Banks, Nicholas W.
Scheinberg, Mila
Wu, Ling
Saitta, Biagio
Elphingstone, Joseph
Larson, A. Noelle
Riester, Scott M.
Pyle, April D.
Bernthal, Nicholas M.
Mikkola, Hanna KA
Ernst, Jason
van Wijnen, Andre J.
Bonaguidi, Michael
Evseenko, Denis
author_facet Ferguson, Gabriel B.
Van Handel, Ben
Bay, Maxwell
Fiziev, Petko
Org, Tonis
Lee, Siyoung
Shkhyan, Ruzanna
Banks, Nicholas W.
Scheinberg, Mila
Wu, Ling
Saitta, Biagio
Elphingstone, Joseph
Larson, A. Noelle
Riester, Scott M.
Pyle, April D.
Bernthal, Nicholas M.
Mikkola, Hanna KA
Ernst, Jason
van Wijnen, Andre J.
Bonaguidi, Michael
Evseenko, Denis
author_sort Ferguson, Gabriel B.
collection PubMed
description Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
format Online
Article
Text
id pubmed-6128860
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61288602018-09-10 Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes Ferguson, Gabriel B. Van Handel, Ben Bay, Maxwell Fiziev, Petko Org, Tonis Lee, Siyoung Shkhyan, Ruzanna Banks, Nicholas W. Scheinberg, Mila Wu, Ling Saitta, Biagio Elphingstone, Joseph Larson, A. Noelle Riester, Scott M. Pyle, April D. Bernthal, Nicholas M. Mikkola, Hanna KA Ernst, Jason van Wijnen, Andre J. Bonaguidi, Michael Evseenko, Denis Nat Commun Article Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine. Nature Publishing Group UK 2018-09-07 /pmc/articles/PMC6128860/ /pubmed/30194383 http://dx.doi.org/10.1038/s41467-018-05573-y Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ferguson, Gabriel B.
Van Handel, Ben
Bay, Maxwell
Fiziev, Petko
Org, Tonis
Lee, Siyoung
Shkhyan, Ruzanna
Banks, Nicholas W.
Scheinberg, Mila
Wu, Ling
Saitta, Biagio
Elphingstone, Joseph
Larson, A. Noelle
Riester, Scott M.
Pyle, April D.
Bernthal, Nicholas M.
Mikkola, Hanna KA
Ernst, Jason
van Wijnen, Andre J.
Bonaguidi, Michael
Evseenko, Denis
Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
title Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
title_full Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
title_fullStr Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
title_full_unstemmed Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
title_short Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
title_sort mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128860/
https://www.ncbi.nlm.nih.gov/pubmed/30194383
http://dx.doi.org/10.1038/s41467-018-05573-y
work_keys_str_mv AT fergusongabrielb mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT vanhandelben mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT baymaxwell mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT fizievpetko mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT orgtonis mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT leesiyoung mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT shkhyanruzanna mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT banksnicholasw mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT scheinbergmila mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT wuling mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT saittabiagio mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT elphingstonejoseph mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT larsonanoelle mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT riesterscottm mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT pyleaprild mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT bernthalnicholasm mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT mikkolahannaka mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT ernstjason mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT vanwijnenandrej mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT bonaguidimichael mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes
AT evseenkodenis mappingmolecularlandmarksofhumanskeletalontogenyandpluripotentstemcellderivedarticularchondrocytes