Cargando…
Single cell network analysis with a mixture of Nested Effects Models
MOTIVATION: New technologies allow for the elaborate measurement of different traits of single cells under genetic perturbations. These interventional data promise to elucidate intra-cellular networks in unprecedented detail and further help to improve treatment of diseases like cancer. However, cel...
Autores principales: | Pirkl, Martin, Beerenwinkel, Niko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129288/ https://www.ncbi.nlm.nih.gov/pubmed/30423100 http://dx.doi.org/10.1093/bioinformatics/bty602 |
Ejemplares similares
-
Discovering epistatic feature interactions from neural network models of regulatory DNA sequences
por: Greenside, Peyton, et al.
Publicado: (2018) -
FLYCOP: metabolic modeling-based analysis and engineering microbial communities
por: García-Jiménez, Beatriz, et al.
Publicado: (2018) -
Understanding the evolution of functional redundancy in metabolic networks
por: Sambamoorthy, Gayathri, et al.
Publicado: (2018) -
Comparative Network Reconstruction using mixed integer programming
por: Bosdriesz, Evert, et al.
Publicado: (2018) -
SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error
por: El-Kebir, Mohammed
Publicado: (2018)