Cargando…
GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease
Retinoic-acid-receptor-related orphan nuclear receptor γt (RORγt) controls the transcription of interleukin-17A (IL-17A), which plays critical roles in the pathogenesis of autoimmune diseases. Severity of several human autoimmune diseases is correlated with frequencies of germinal center kinase–like...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135549/ https://www.ncbi.nlm.nih.gov/pubmed/30214937 http://dx.doi.org/10.1126/sciadv.aat5401 |
_version_ | 1783354845470654464 |
---|---|
author | Chuang, Huai-Chia Tsai, Ching-Yi Hsueh, Chia-Hsin Tan, Tse-Hua |
author_facet | Chuang, Huai-Chia Tsai, Ching-Yi Hsueh, Chia-Hsin Tan, Tse-Hua |
author_sort | Chuang, Huai-Chia |
collection | PubMed |
description | Retinoic-acid-receptor-related orphan nuclear receptor γt (RORγt) controls the transcription of interleukin-17A (IL-17A), which plays critical roles in the pathogenesis of autoimmune diseases. Severity of several human autoimmune diseases is correlated with frequencies of germinal center kinase–like kinase (GLK) (also known as MAP4K3)–overexpressing T cells; however, the mechanism of GLK overexpression–induced autoimmunity remains unclear. We report the signal transduction converging on aryl hydrocarbon receptor (AhR)–RORγt interaction to activate transcription of the IL-17A gene in T cells. T cell–specific GLK transgenic mice spontaneously developed autoimmune diseases with selective induction of IL-17A in T cells. In GLK transgenic T cells, protein kinase Cθ (PKCθ) phosphorylated AhR at Ser(36) and induced AhR nuclear translocation. AhR also interacted with RORγt and transported RORγt into the nucleus. IKKβ (inhibitor of nuclear factor κB kinase β)–mediated RORγt Ser(489) phosphorylation induced the AhR-RORγt interaction. T cell receptor (TCR) signaling also induced the novel RORγt phosphorylation and subsequent AhR-RORγt interaction. Collectively, TCR signaling or GLK overexpression induces IL-17A transcription through the IKKβ-mediated RORγt phosphorylation and the AhR-RORγt interaction in T cells. Our findings suggest that inhibitors of GLK or the AhR-RORγt complex could be used as IL-17A–blocking agents for IL-17A–mediated autoimmune diseases. |
format | Online Article Text |
id | pubmed-6135549 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61355492018-09-13 GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease Chuang, Huai-Chia Tsai, Ching-Yi Hsueh, Chia-Hsin Tan, Tse-Hua Sci Adv Research Articles Retinoic-acid-receptor-related orphan nuclear receptor γt (RORγt) controls the transcription of interleukin-17A (IL-17A), which plays critical roles in the pathogenesis of autoimmune diseases. Severity of several human autoimmune diseases is correlated with frequencies of germinal center kinase–like kinase (GLK) (also known as MAP4K3)–overexpressing T cells; however, the mechanism of GLK overexpression–induced autoimmunity remains unclear. We report the signal transduction converging on aryl hydrocarbon receptor (AhR)–RORγt interaction to activate transcription of the IL-17A gene in T cells. T cell–specific GLK transgenic mice spontaneously developed autoimmune diseases with selective induction of IL-17A in T cells. In GLK transgenic T cells, protein kinase Cθ (PKCθ) phosphorylated AhR at Ser(36) and induced AhR nuclear translocation. AhR also interacted with RORγt and transported RORγt into the nucleus. IKKβ (inhibitor of nuclear factor κB kinase β)–mediated RORγt Ser(489) phosphorylation induced the AhR-RORγt interaction. T cell receptor (TCR) signaling also induced the novel RORγt phosphorylation and subsequent AhR-RORγt interaction. Collectively, TCR signaling or GLK overexpression induces IL-17A transcription through the IKKβ-mediated RORγt phosphorylation and the AhR-RORγt interaction in T cells. Our findings suggest that inhibitors of GLK or the AhR-RORγt complex could be used as IL-17A–blocking agents for IL-17A–mediated autoimmune diseases. American Association for the Advancement of Science 2018-09-12 /pmc/articles/PMC6135549/ /pubmed/30214937 http://dx.doi.org/10.1126/sciadv.aat5401 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Chuang, Huai-Chia Tsai, Ching-Yi Hsueh, Chia-Hsin Tan, Tse-Hua GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease |
title | GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease |
title_full | GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease |
title_fullStr | GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease |
title_full_unstemmed | GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease |
title_short | GLK-IKKβ signaling induces dimerization and translocation of the AhR-RORγt complex in IL-17A induction and autoimmune disease |
title_sort | glk-ikkβ signaling induces dimerization and translocation of the ahr-rorγt complex in il-17a induction and autoimmune disease |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135549/ https://www.ncbi.nlm.nih.gov/pubmed/30214937 http://dx.doi.org/10.1126/sciadv.aat5401 |
work_keys_str_mv | AT chuanghuaichia glkikkbsignalinginducesdimerizationandtranslocationoftheahrrorgtcomplexinil17ainductionandautoimmunedisease AT tsaichingyi glkikkbsignalinginducesdimerizationandtranslocationoftheahrrorgtcomplexinil17ainductionandautoimmunedisease AT hsuehchiahsin glkikkbsignalinginducesdimerizationandtranslocationoftheahrrorgtcomplexinil17ainductionandautoimmunedisease AT tantsehua glkikkbsignalinginducesdimerizationandtranslocationoftheahrrorgtcomplexinil17ainductionandautoimmunedisease |