Cargando…

An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus

Nodal signaling controls asymmetric organ placement during vertebrate embryogenesis. Nodal is induced by a leftward fluid flow at the ciliated left-right organizer (LRO). The mechanism of flow sensing, however, has remained elusive. pkd2 encodes the calcium channel Polycystin-2, which is required fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Vick, Philipp, Kreis, Jennifer, Schneider, Isabelle, Tingler, Melanie, Getwan, Maike, Thumberger, Thomas, Beyer, Tina, Schweickert, Axel, Blum, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136938/
https://www.ncbi.nlm.nih.gov/pubmed/30428378
http://dx.doi.org/10.1016/j.isci.2018.03.011
Descripción
Sumario:Nodal signaling controls asymmetric organ placement during vertebrate embryogenesis. Nodal is induced by a leftward fluid flow at the ciliated left-right organizer (LRO). The mechanism of flow sensing, however, has remained elusive. pkd2 encodes the calcium channel Polycystin-2, which is required for kidney development and laterality, and may act in flow perception. Here, we have studied the role of Polycystin-2 in Xenopus and show that pkd2 is indispensable for left-right (LR) asymmetry. Knockdown of pkd2 prevented left-asymmetric nodal cascade induction in the lateral plate mesoderm. Defects were due to failure of LRO specification, morphogenesis, and, consequently, absence of leftward flow. Polycystin-2 synergizes with the unconventional nodal-type signaling molecule Xnr3 to induce the LRO precursor tissue before gastrulation, upstream of symmetry breakage. Our data uncover an unknown function of pkd2 in LR axis formation, which we propose represents an ancient role of Polycystin-2 during LRO induction in lower vertebrates.