Cargando…

Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event

The standard model of multiple myeloma (MM) oncogenesis is based on the genetic instability of MM cells and presents its evolution as the emergence of clones with more and more aggressive genotypes, giving them surviving and proliferating advantage. The micro-environment has a passive role. In contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Capp, Jean-Pascal, Bataille, Régis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140628/
https://www.ncbi.nlm.nih.gov/pubmed/30250824
http://dx.doi.org/10.3389/fonc.2018.00355
Descripción
Sumario:The standard model of multiple myeloma (MM) oncogenesis is based on the genetic instability of MM cells and presents its evolution as the emergence of clones with more and more aggressive genotypes, giving them surviving and proliferating advantage. The micro-environment has a passive role. In contrast, many works have shown that the progression of MM is also characterized by the selection of clones with extended phenotypes able to destroy bone trabeculae, suggesting a major role for early micro-environmental disruption. We present a model of MM oncogenesis in which genetic instability is the consequence of the disruption of normal interactions between plasma cells and their environment, the bone remodeling compartment. These interactions, which normally ensure the stability of the genotypes and phenotypes of normal plasma cells could be disrupted by many factors as soon as the early steps of the disease (MGUS, pre-MGUS states). Therapeutical implications of the model are presented.