Cargando…
Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells
BACKGROUND: Honokiol is a bioactive lignanoid and has been utilized in traditional Chinese medicine for a long time. It exhibits several pharmacological properties, such as anticancer effects, anti-inflammatory effects, and antianxiety effects. However, the poor aqueous solubility of honokiol has im...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149943/ https://www.ncbi.nlm.nih.gov/pubmed/30271141 http://dx.doi.org/10.2147/IJN.S178416 |
_version_ | 1783356902456950784 |
---|---|
author | Wu, Weiwei Wang, Li Wang, Lingling Zu, Yuangang Wang, Siying Liu, Peiyan Zhao, Xiuhua |
author_facet | Wu, Weiwei Wang, Li Wang, Lingling Zu, Yuangang Wang, Siying Liu, Peiyan Zhao, Xiuhua |
author_sort | Wu, Weiwei |
collection | PubMed |
description | BACKGROUND: Honokiol is a bioactive lignanoid and has been utilized in traditional Chinese medicine for a long time. It exhibits several pharmacological properties, such as anticancer effects, anti-inflammatory effects, and antianxiety effects. However, the poor aqueous solubility of honokiol has impeded clinical applications. MATERIALS AND METHODS: In the present study, we adopted the liquid antisolvent precipitation (LAP) technique to prepare nanoparticles of honokiol for enhancement of solubility and bioavailability. Moreover, the honokiol nanoparticles obtained were investigated and evaluated in terms of morphology, physicochemical properties, saturation solubility, dissolution in vitro, bioavailability in vivo, toxicity, and the inhibitory effect on growth of HepG2 cells. RESULTS: The obtained honokiol nanoparticles existed nearly in spherical shape and could be turned into amorphous structure by the LAP method. Moreover, the solubility of the honokiol nanoparticles was extremely higher than that of free honokiol, and the nanoparticle dissolution rate was also higher than that of free honokiol, which was about 20.41 times and 26.2 times than that of free honokiol in artificial gastric juice and in artificial intestinal juice. The area under the curve [AUC(0–t)] value of honokiol nanoparticles was about 6.52 times greater than that of free honokiol; therefore, the honokiol nanoparticles had a higher bioavailability than free honokiol but were innoxious to the organs of rats. Additionally, the honokiol nanoparticles exhibited a higher inhibition of HepG2 cells due to their lower IC(50) compared to free honokiol. CONCLUSION: Honokiol nanoparticles have high solubility and bioavailability, and can become a new oral drug formulation and produce a better response for its clinical applications. |
format | Online Article Text |
id | pubmed-6149943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61499432018-09-28 Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells Wu, Weiwei Wang, Li Wang, Lingling Zu, Yuangang Wang, Siying Liu, Peiyan Zhao, Xiuhua Int J Nanomedicine Original Research BACKGROUND: Honokiol is a bioactive lignanoid and has been utilized in traditional Chinese medicine for a long time. It exhibits several pharmacological properties, such as anticancer effects, anti-inflammatory effects, and antianxiety effects. However, the poor aqueous solubility of honokiol has impeded clinical applications. MATERIALS AND METHODS: In the present study, we adopted the liquid antisolvent precipitation (LAP) technique to prepare nanoparticles of honokiol for enhancement of solubility and bioavailability. Moreover, the honokiol nanoparticles obtained were investigated and evaluated in terms of morphology, physicochemical properties, saturation solubility, dissolution in vitro, bioavailability in vivo, toxicity, and the inhibitory effect on growth of HepG2 cells. RESULTS: The obtained honokiol nanoparticles existed nearly in spherical shape and could be turned into amorphous structure by the LAP method. Moreover, the solubility of the honokiol nanoparticles was extremely higher than that of free honokiol, and the nanoparticle dissolution rate was also higher than that of free honokiol, which was about 20.41 times and 26.2 times than that of free honokiol in artificial gastric juice and in artificial intestinal juice. The area under the curve [AUC(0–t)] value of honokiol nanoparticles was about 6.52 times greater than that of free honokiol; therefore, the honokiol nanoparticles had a higher bioavailability than free honokiol but were innoxious to the organs of rats. Additionally, the honokiol nanoparticles exhibited a higher inhibition of HepG2 cells due to their lower IC(50) compared to free honokiol. CONCLUSION: Honokiol nanoparticles have high solubility and bioavailability, and can become a new oral drug formulation and produce a better response for its clinical applications. Dove Medical Press 2018-09-17 /pmc/articles/PMC6149943/ /pubmed/30271141 http://dx.doi.org/10.2147/IJN.S178416 Text en © 2018 Wu et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Wu, Weiwei Wang, Li Wang, Lingling Zu, Yuangang Wang, Siying Liu, Peiyan Zhao, Xiuhua Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells |
title | Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells |
title_full | Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells |
title_fullStr | Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells |
title_full_unstemmed | Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells |
title_short | Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells |
title_sort | preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on hepg2 cells |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149943/ https://www.ncbi.nlm.nih.gov/pubmed/30271141 http://dx.doi.org/10.2147/IJN.S178416 |
work_keys_str_mv | AT wuweiwei preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells AT wangli preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells AT wanglingling preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells AT zuyuangang preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells AT wangsiying preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells AT liupeiyan preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells AT zhaoxiuhua preparationofhonokiolnanoparticlesbyliquidantisolventprecipitationtechniquecharacterizationpharmacokineticsandevaluationofinhibitoryeffectonhepg2cells |