Cargando…

Synthesis and Molecular Modeling Studies of N′-Hydroxyindazolecarboximidamides as Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors

Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that is highly overexpressed in various cancer cells and antigen-presenting cells. It has emerged as an attractive therapeutic target for cancer immunotherapy, which has prompted high interest in the development of small-molecule in...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dong-Ho, Lee, Joo-Youn, Jeong, Jieun, Kim, Miok, Lee, Kyung Won, Jang, Eunseo, Ahn, Sunjoo, Lee, Chang Hoon, Hwang, Jong Yeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150275/
https://www.ncbi.nlm.nih.gov/pubmed/29120388
http://dx.doi.org/10.3390/molecules22111936
Descripción
Sumario:Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that is highly overexpressed in various cancer cells and antigen-presenting cells. It has emerged as an attractive therapeutic target for cancer immunotherapy, which has prompted high interest in the development of small-molecule inhibitors. To discover novel IDO1 inhibitors, we designed and synthesized a series of N′-hydroxyindazolecarboximidamides. Among the compounds synthesized, compound 8a inhibited both tryptophan depletion and kynurenine production through the IDO1 enzyme. Molecular docking studies revealed that 8a binds to IDO1 with the same binding mode as the analog, epacadostat (INCB24360). Here, we report the synthesis and biological evaluation of these hydroxyindazolecarboximidamides and present the molecular docking study of 8a with IDO1.