Cargando…
Cellulase-Assisted Extraction of Polysaccharides from White Hyacinth Bean: Characterization of Antioxidant Activity and Promotion for Probiotics Proliferation
Food-derived polysaccharides have advantages over synthetical compounds and have attracted interest globally for decades. In this study, we optimized the cellulase-assisted extraction of polysaccharides from white hyacinth bean (PWBs) with the aid of response surface methodology (RSM). The optimum e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151586/ https://www.ncbi.nlm.nih.gov/pubmed/29053619 http://dx.doi.org/10.3390/molecules22101764 |
Sumario: | Food-derived polysaccharides have advantages over synthetical compounds and have attracted interest globally for decades. In this study, we optimized the cellulase-assisted extraction of polysaccharides from white hyacinth bean (PWBs) with the aid of response surface methodology (RSM). The optimum extraction parameters were a pH of 7.79, a cellulase of 2.73%, and a ratio of water to material of 61.39, producing a high polysaccharide yield (3.32 ± 0.03)%. The scavenging ability of PWBs varied on three radicals (hydroxyl > 2,2-diphenyl-1-picrylhydrazyl (DPPH) > superoxide). Furthermore, PWBs contributed to the proliferation of three probiotic bacteria (Lactobacillus acidophilus LA5, Bifidobacterium bifidum BB01, and Lactobacillus bulgaricus LB6). These investigations of PWBs provide a novel bioresource for the exploitation of antioxidant and probiotic bacterial proliferation. |
---|