Cargando…
Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy
We report a versatile divergent methodology to construct dendrimers from a tetrafunctional core, utilizing the robust copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, “click”) reaction for both dendrimer synthesis and post-synthesis functionalization. Dendrimers of generations 1–3 with 8–32 pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152728/ https://www.ncbi.nlm.nih.gov/pubmed/28538670 http://dx.doi.org/10.3390/molecules22060868 |
_version_ | 1783357419392335872 |
---|---|
author | Ladd, Elizabeth Sheikhi, Amir Li, Na van de Ven, Theo G.M. Kakkar, Ashok |
author_facet | Ladd, Elizabeth Sheikhi, Amir Li, Na van de Ven, Theo G.M. Kakkar, Ashok |
author_sort | Ladd, Elizabeth |
collection | PubMed |
description | We report a versatile divergent methodology to construct dendrimers from a tetrafunctional core, utilizing the robust copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, “click”) reaction for both dendrimer synthesis and post-synthesis functionalization. Dendrimers of generations 1–3 with 8–32 protected or free OH and acetylene surface groups, were synthesized using building blocks that included acetylene- or azide-terminated molecules with carboxylic acid or diol end groups, respectively. The acetylene surface groups were subsequently used to covalently link cationic amino groups. A preliminary evaluation indicated that the generation one dendrimer with terminal NH(3)(+) groups was the most effective bactericide, and it was more potent than several previously studied dendrimers. Our results suggest that size, functional end groups and hydrophilicity are important parameters to consider in designing efficient antimicrobial dendrimers. |
format | Online Article Text |
id | pubmed-6152728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61527282018-11-13 Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy Ladd, Elizabeth Sheikhi, Amir Li, Na van de Ven, Theo G.M. Kakkar, Ashok Molecules Article We report a versatile divergent methodology to construct dendrimers from a tetrafunctional core, utilizing the robust copper(I) catalyzed alkyne-azide cycloaddition (CuAAC, “click”) reaction for both dendrimer synthesis and post-synthesis functionalization. Dendrimers of generations 1–3 with 8–32 protected or free OH and acetylene surface groups, were synthesized using building blocks that included acetylene- or azide-terminated molecules with carboxylic acid or diol end groups, respectively. The acetylene surface groups were subsequently used to covalently link cationic amino groups. A preliminary evaluation indicated that the generation one dendrimer with terminal NH(3)(+) groups was the most effective bactericide, and it was more potent than several previously studied dendrimers. Our results suggest that size, functional end groups and hydrophilicity are important parameters to consider in designing efficient antimicrobial dendrimers. MDPI 2017-05-24 /pmc/articles/PMC6152728/ /pubmed/28538670 http://dx.doi.org/10.3390/molecules22060868 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ladd, Elizabeth Sheikhi, Amir Li, Na van de Ven, Theo G.M. Kakkar, Ashok Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy |
title | Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy |
title_full | Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy |
title_fullStr | Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy |
title_full_unstemmed | Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy |
title_short | Design and Synthesis of Dendrimers with Facile Surface Group Functionalization, and an Evaluation of Their Bactericidal Efficacy |
title_sort | design and synthesis of dendrimers with facile surface group functionalization, and an evaluation of their bactericidal efficacy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152728/ https://www.ncbi.nlm.nih.gov/pubmed/28538670 http://dx.doi.org/10.3390/molecules22060868 |
work_keys_str_mv | AT laddelizabeth designandsynthesisofdendrimerswithfacilesurfacegroupfunctionalizationandanevaluationoftheirbactericidalefficacy AT sheikhiamir designandsynthesisofdendrimerswithfacilesurfacegroupfunctionalizationandanevaluationoftheirbactericidalefficacy AT lina designandsynthesisofdendrimerswithfacilesurfacegroupfunctionalizationandanevaluationoftheirbactericidalefficacy AT vandeventheogm designandsynthesisofdendrimerswithfacilesurfacegroupfunctionalizationandanevaluationoftheirbactericidalefficacy AT kakkarashok designandsynthesisofdendrimerswithfacilesurfacegroupfunctionalizationandanevaluationoftheirbactericidalefficacy |