Cargando…
4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin
Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152978/ https://www.ncbi.nlm.nih.gov/pubmed/30248133 http://dx.doi.org/10.1371/journal.pone.0203843 |
_version_ | 1783357453247709184 |
---|---|
author | Shrestha, Shraddha Oh, Dong-Ha McKowen, J. Keller Dassanayake, Maheshi Hart, Craig M. |
author_facet | Shrestha, Shraddha Oh, Dong-Ha McKowen, J. Keller Dassanayake, Maheshi Hart, Craig M. |
author_sort | Shrestha, Shraddha |
collection | PubMed |
description | Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected cis- and trans-interaction partners of four BEAF binding regions (viewpoints) using 4C (circular chromosome conformation capture) and analyzed their association with different genomic features. Previous genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, so our viewpoints were selected to reflect this. Our 4C data show the interaction partners of our viewpoints are highly variable and generally enriched for active chromatin marks. The most consistent association was with housekeeping genes, a feature in common with our viewpoints. Fluorescence in situ hybridization indicated that the long-distance interactions occur even in the absence of BEAF. These data are most consistent with a model in which BEAF is redundant with other factors found at active promoters. Our results point to principles of long-distance interactions made by active chromatin, supporting a previously proposed model in which condensed chromatin is sticky and associates into topologically associating domains (TADs) separated by active chromatin. We propose that the highly variable long-distance interactions we detect are driven by redundant factors that open chromatin to promote transcription, combined with active chromatin filling spaces between TADs while packing of TADs relative to each other varies from cell to cell. |
format | Online Article Text |
id | pubmed-6152978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61529782018-10-19 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin Shrestha, Shraddha Oh, Dong-Ha McKowen, J. Keller Dassanayake, Maheshi Hart, Craig M. PLoS One Research Article Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected cis- and trans-interaction partners of four BEAF binding regions (viewpoints) using 4C (circular chromosome conformation capture) and analyzed their association with different genomic features. Previous genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, so our viewpoints were selected to reflect this. Our 4C data show the interaction partners of our viewpoints are highly variable and generally enriched for active chromatin marks. The most consistent association was with housekeeping genes, a feature in common with our viewpoints. Fluorescence in situ hybridization indicated that the long-distance interactions occur even in the absence of BEAF. These data are most consistent with a model in which BEAF is redundant with other factors found at active promoters. Our results point to principles of long-distance interactions made by active chromatin, supporting a previously proposed model in which condensed chromatin is sticky and associates into topologically associating domains (TADs) separated by active chromatin. We propose that the highly variable long-distance interactions we detect are driven by redundant factors that open chromatin to promote transcription, combined with active chromatin filling spaces between TADs while packing of TADs relative to each other varies from cell to cell. Public Library of Science 2018-09-24 /pmc/articles/PMC6152978/ /pubmed/30248133 http://dx.doi.org/10.1371/journal.pone.0203843 Text en © 2018 Shrestha et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shrestha, Shraddha Oh, Dong-Ha McKowen, J. Keller Dassanayake, Maheshi Hart, Craig M. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin |
title | 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin |
title_full | 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin |
title_fullStr | 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin |
title_full_unstemmed | 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin |
title_short | 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin |
title_sort | 4c-seq characterization of drosophila beaf binding regions provides evidence for highly variable long-distance interactions between active chromatin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152978/ https://www.ncbi.nlm.nih.gov/pubmed/30248133 http://dx.doi.org/10.1371/journal.pone.0203843 |
work_keys_str_mv | AT shresthashraddha 4cseqcharacterizationofdrosophilabeafbindingregionsprovidesevidenceforhighlyvariablelongdistanceinteractionsbetweenactivechromatin AT ohdongha 4cseqcharacterizationofdrosophilabeafbindingregionsprovidesevidenceforhighlyvariablelongdistanceinteractionsbetweenactivechromatin AT mckowenjkeller 4cseqcharacterizationofdrosophilabeafbindingregionsprovidesevidenceforhighlyvariablelongdistanceinteractionsbetweenactivechromatin AT dassanayakemaheshi 4cseqcharacterizationofdrosophilabeafbindingregionsprovidesevidenceforhighlyvariablelongdistanceinteractionsbetweenactivechromatin AT hartcraigm 4cseqcharacterizationofdrosophilabeafbindingregionsprovidesevidenceforhighlyvariablelongdistanceinteractionsbetweenactivechromatin |