Cargando…

Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome

The proteasome is a validated target in drug discovery for diseases associated with unusual proteasomal activity. Here we report that two diphenyldihaloketones, CLEFMA and EF24, inhibit the peptidase activity of the 26S proteasome. The objective of this study was to investigate interaction of these...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Geeta, Nkepang, Gregory, Xu, Jian, Yari, Hooman, Houson, Hailey, Teng, Chengwen, Awasthi, Vibhudutta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153970/
https://www.ncbi.nlm.nih.gov/pubmed/30280096
http://dx.doi.org/10.3389/fchem.2018.00392
_version_ 1783357604723949568
author Rao, Geeta
Nkepang, Gregory
Xu, Jian
Yari, Hooman
Houson, Hailey
Teng, Chengwen
Awasthi, Vibhudutta
author_facet Rao, Geeta
Nkepang, Gregory
Xu, Jian
Yari, Hooman
Houson, Hailey
Teng, Chengwen
Awasthi, Vibhudutta
author_sort Rao, Geeta
collection PubMed
description The proteasome is a validated target in drug discovery for diseases associated with unusual proteasomal activity. Here we report that two diphenyldihaloketones, CLEFMA and EF24, inhibit the peptidase activity of the 26S proteasome. The objective of this study was to investigate interaction of these compounds with the proteasome and identify a putative target within the protein components of the 26S proteasome. We employed standard fluorogenic peptide-based proteasome activity assay for trypsin-like, chymotrypsin-like, and caspase-like activities of human purified 26S proteasome in cell-free conditions. GFPu-1 and HUVEC cells were used as proteasome reporter cells. Direct binding studies used purified 19S, 20S, 26S, and recombinant RPN13-Pru for interaction with biotinylated analogs of CLEFMA and EF24. The reaction mixtures were subjected to horizontal gel electrophoresis, streptavidin-blotting, pull-down assays, and immunoblotting. The identity of the interacting protein was determined by 2D gel electrophoresis and LC-MS/MS. Drug affinity responsive target stability technique was utilized to examine if CLEFMA binding confers protection to RPN13 against thermolysin-catalyzed proteolysis. We found that trypsin-and chymotrypsin-like activities of the 26S proteasome were reduced significantly by both compounds. The compounds also reduced the proteolytic activity in GFPu-1 and HUVEC cells, resulting in accumulation of ubiquitinated proteins without affecting the autophagy process. From direct binding assays a 43 kDa protein in the 26S proteasome was found to be the interacting partner. This protein was identified by tandem mass spectroscopy as regulatory particle subunit 13 (RPN13), a ubiquitin receptor in the 19S regulatory particle. Furthermore, binding of CLEFMA to RPN13 did not protect latter from thermolysin-mediated proteolysis. Together, this study showed diphenyldihaloketones as potential proteasome inhibitors for treatment of diseases with perturbed proteasome function. The results also unraveled RPN13 as a unique target of CLEFMA and EF24. As a result, these compounds inhibit both trypsin-like and chymotrypsin-like proteasome activities.
format Online
Article
Text
id pubmed-6153970
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61539702018-10-02 Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome Rao, Geeta Nkepang, Gregory Xu, Jian Yari, Hooman Houson, Hailey Teng, Chengwen Awasthi, Vibhudutta Front Chem Chemistry The proteasome is a validated target in drug discovery for diseases associated with unusual proteasomal activity. Here we report that two diphenyldihaloketones, CLEFMA and EF24, inhibit the peptidase activity of the 26S proteasome. The objective of this study was to investigate interaction of these compounds with the proteasome and identify a putative target within the protein components of the 26S proteasome. We employed standard fluorogenic peptide-based proteasome activity assay for trypsin-like, chymotrypsin-like, and caspase-like activities of human purified 26S proteasome in cell-free conditions. GFPu-1 and HUVEC cells were used as proteasome reporter cells. Direct binding studies used purified 19S, 20S, 26S, and recombinant RPN13-Pru for interaction with biotinylated analogs of CLEFMA and EF24. The reaction mixtures were subjected to horizontal gel electrophoresis, streptavidin-blotting, pull-down assays, and immunoblotting. The identity of the interacting protein was determined by 2D gel electrophoresis and LC-MS/MS. Drug affinity responsive target stability technique was utilized to examine if CLEFMA binding confers protection to RPN13 against thermolysin-catalyzed proteolysis. We found that trypsin-and chymotrypsin-like activities of the 26S proteasome were reduced significantly by both compounds. The compounds also reduced the proteolytic activity in GFPu-1 and HUVEC cells, resulting in accumulation of ubiquitinated proteins without affecting the autophagy process. From direct binding assays a 43 kDa protein in the 26S proteasome was found to be the interacting partner. This protein was identified by tandem mass spectroscopy as regulatory particle subunit 13 (RPN13), a ubiquitin receptor in the 19S regulatory particle. Furthermore, binding of CLEFMA to RPN13 did not protect latter from thermolysin-mediated proteolysis. Together, this study showed diphenyldihaloketones as potential proteasome inhibitors for treatment of diseases with perturbed proteasome function. The results also unraveled RPN13 as a unique target of CLEFMA and EF24. As a result, these compounds inhibit both trypsin-like and chymotrypsin-like proteasome activities. Frontiers Media S.A. 2018-09-10 /pmc/articles/PMC6153970/ /pubmed/30280096 http://dx.doi.org/10.3389/fchem.2018.00392 Text en Copyright © 2018 Rao, Nkepang, Xu, Yari, Houson, Teng and Awasthi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Chemistry
Rao, Geeta
Nkepang, Gregory
Xu, Jian
Yari, Hooman
Houson, Hailey
Teng, Chengwen
Awasthi, Vibhudutta
Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome
title Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome
title_full Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome
title_fullStr Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome
title_full_unstemmed Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome
title_short Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome
title_sort ubiquitin receptor rpn13 mediates the inhibitory interaction of diphenyldihaloketones clefma and ef24 with the 26s proteasome
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153970/
https://www.ncbi.nlm.nih.gov/pubmed/30280096
http://dx.doi.org/10.3389/fchem.2018.00392
work_keys_str_mv AT raogeeta ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome
AT nkepanggregory ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome
AT xujian ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome
AT yarihooman ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome
AT housonhailey ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome
AT tengchengwen ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome
AT awasthivibhudutta ubiquitinreceptorrpn13mediatestheinhibitoryinteractionofdiphenyldihaloketonesclefmaandef24withthe26sproteasome