Cargando…
Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting
Identification of hot spots, a small portion of protein-protein interface residues that contribute the majority of the binding free energy, can provide crucial information for understanding the function of proteins and studying their interactions. Based on our previous method (PredHS), we propose a...
Autores principales: | Wang, Hao, Liu, Chuyao, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155324/ https://www.ncbi.nlm.nih.gov/pubmed/30250210 http://dx.doi.org/10.1038/s41598-018-32511-1 |
Ejemplares similares
-
XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting
por: Deng, Lei, et al.
Publicado: (2019) -
Prediction of hot spots in protein–DNA binding interfaces based on supervised isometric feature mapping and extreme gradient boosting
por: Li, Ke, et al.
Publicado: (2020) -
A semi-supervised boosting SVM for predicting hot spots at protein-protein Interfaces
por: Xu, Bin, et al.
Publicado: (2012) -
Machine Learning Approaches for Protein–Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment
por: Liu, Siyu, et al.
Publicado: (2018) -
HotPoint: hot spot prediction server for protein interfaces
por: Tuncbag, Nurcan, et al.
Publicado: (2010)