Cargando…

Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection

Citrobacter rodentium infection is a model for infection with attaching and effacing pathogens, such as enteropathogenic Escherichia coli. The vasoactive intestinal peptide (VIP) has emerged as an anti-inflammatory agent, documented to inhibit Th1 immune responses and successfully treat animal model...

Descripción completa

Detalles Bibliográficos
Autores principales: Maiti, Arpan K., Sharba, Sinan, Navabi, Nazanin, Lindén, Sara K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155558/
https://www.ncbi.nlm.nih.gov/pubmed/30252907
http://dx.doi.org/10.1371/journal.pone.0204567
_version_ 1783357923330621440
author Maiti, Arpan K.
Sharba, Sinan
Navabi, Nazanin
Lindén, Sara K.
author_facet Maiti, Arpan K.
Sharba, Sinan
Navabi, Nazanin
Lindén, Sara K.
author_sort Maiti, Arpan K.
collection PubMed
description Citrobacter rodentium infection is a model for infection with attaching and effacing pathogens, such as enteropathogenic Escherichia coli. The vasoactive intestinal peptide (VIP) has emerged as an anti-inflammatory agent, documented to inhibit Th1 immune responses and successfully treat animal models of inflammation. VIP is also a mucus secretagogue. Here, we found that colonic levels of VIP decrease during murine C. rodentium infection with a similar time dependency as measurements reflecting mitochondrial function and epithelial integrity. The decrease in VIP appears mainly driven by changes in the cytokine environment, as no changes in VIP levels were detected in infected mice lacking interferon gamma (IFNγ). VIP supplementation alleviated the reduction of activity and levels of mitochondrial respiratory complexes I and IV, mitochondrial phosphorylation capacity, transmembrane potential and ATP generation caused by IFNγ, TNFα and C. rodentium infection, in an in vitro mucosal surface. Similarly, VIP treatment regimens that included the day 5–10 post infection period alleviated decreases in enzyme complexes I and IV, phosphorylation capacity, mitochondrial transmembrane potential and ATP generation as well as increased apoptosis levels during murine infection with C. rodentium. However, VIP treatment failed to alleviate colitis, although there was a tendency to decreased pathogen density in contact with the epithelium and in the spleen. Both in vivo and in vitro, NO generation increased during C. rodentium infection, which was alleviated by VIP. Thus, therapeutic VIP administration to restore the decreased levels during infection had beneficial effects on epithelial cells and their mitochondria, but not on the overall infection outcome.
format Online
Article
Text
id pubmed-6155558
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-61555582018-10-19 Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection Maiti, Arpan K. Sharba, Sinan Navabi, Nazanin Lindén, Sara K. PLoS One Research Article Citrobacter rodentium infection is a model for infection with attaching and effacing pathogens, such as enteropathogenic Escherichia coli. The vasoactive intestinal peptide (VIP) has emerged as an anti-inflammatory agent, documented to inhibit Th1 immune responses and successfully treat animal models of inflammation. VIP is also a mucus secretagogue. Here, we found that colonic levels of VIP decrease during murine C. rodentium infection with a similar time dependency as measurements reflecting mitochondrial function and epithelial integrity. The decrease in VIP appears mainly driven by changes in the cytokine environment, as no changes in VIP levels were detected in infected mice lacking interferon gamma (IFNγ). VIP supplementation alleviated the reduction of activity and levels of mitochondrial respiratory complexes I and IV, mitochondrial phosphorylation capacity, transmembrane potential and ATP generation caused by IFNγ, TNFα and C. rodentium infection, in an in vitro mucosal surface. Similarly, VIP treatment regimens that included the day 5–10 post infection period alleviated decreases in enzyme complexes I and IV, phosphorylation capacity, mitochondrial transmembrane potential and ATP generation as well as increased apoptosis levels during murine infection with C. rodentium. However, VIP treatment failed to alleviate colitis, although there was a tendency to decreased pathogen density in contact with the epithelium and in the spleen. Both in vivo and in vitro, NO generation increased during C. rodentium infection, which was alleviated by VIP. Thus, therapeutic VIP administration to restore the decreased levels during infection had beneficial effects on epithelial cells and their mitochondria, but not on the overall infection outcome. Public Library of Science 2018-09-25 /pmc/articles/PMC6155558/ /pubmed/30252907 http://dx.doi.org/10.1371/journal.pone.0204567 Text en © 2018 Maiti et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Maiti, Arpan K.
Sharba, Sinan
Navabi, Nazanin
Lindén, Sara K.
Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection
title Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection
title_full Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection
title_fullStr Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection
title_full_unstemmed Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection
title_short Colonic levels of vasoactive intestinal peptide decrease during infection and exogenous VIP protects epithelial mitochondria against the negative effects of IFNγ and TNFα induced during Citrobacter rodentium infection
title_sort colonic levels of vasoactive intestinal peptide decrease during infection and exogenous vip protects epithelial mitochondria against the negative effects of ifnγ and tnfα induced during citrobacter rodentium infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155558/
https://www.ncbi.nlm.nih.gov/pubmed/30252907
http://dx.doi.org/10.1371/journal.pone.0204567
work_keys_str_mv AT maitiarpank coloniclevelsofvasoactiveintestinalpeptidedecreaseduringinfectionandexogenousvipprotectsepithelialmitochondriaagainstthenegativeeffectsofifngandtnfainducedduringcitrobacterrodentiuminfection
AT sharbasinan coloniclevelsofvasoactiveintestinalpeptidedecreaseduringinfectionandexogenousvipprotectsepithelialmitochondriaagainstthenegativeeffectsofifngandtnfainducedduringcitrobacterrodentiuminfection
AT navabinazanin coloniclevelsofvasoactiveintestinalpeptidedecreaseduringinfectionandexogenousvipprotectsepithelialmitochondriaagainstthenegativeeffectsofifngandtnfainducedduringcitrobacterrodentiuminfection
AT lindensarak coloniclevelsofvasoactiveintestinalpeptidedecreaseduringinfectionandexogenousvipprotectsepithelialmitochondriaagainstthenegativeeffectsofifngandtnfainducedduringcitrobacterrodentiuminfection