Cargando…

Simultaneous polymerization and adhesion under hypoxia in sickle cell disease

Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS...

Descripción completa

Detalles Bibliográficos
Autores principales: Papageorgiou, Dimitrios P., Abidi, Sabia Z., Chang, Hung-Yu, Li, Xuejin, Kato, Gregory J., Karniadakis, George E., Suresh, Subra, Dao, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156668/
https://www.ncbi.nlm.nih.gov/pubmed/30190429
http://dx.doi.org/10.1073/pnas.1807405115
_version_ 1783358143345983488
author Papageorgiou, Dimitrios P.
Abidi, Sabia Z.
Chang, Hung-Yu
Li, Xuejin
Kato, Gregory J.
Karniadakis, George E.
Suresh, Subra
Dao, Ming
author_facet Papageorgiou, Dimitrios P.
Abidi, Sabia Z.
Chang, Hung-Yu
Li, Xuejin
Kato, Gregory J.
Karniadakis, George E.
Suresh, Subra
Dao, Ming
author_sort Papageorgiou, Dimitrios P.
collection PubMed
description Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that (i) hypoxia significantly enhances sickle RBC adherence; (ii) HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; (iii) SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and (iv) polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis.
format Online
Article
Text
id pubmed-6156668
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-61566682018-09-27 Simultaneous polymerization and adhesion under hypoxia in sickle cell disease Papageorgiou, Dimitrios P. Abidi, Sabia Z. Chang, Hung-Yu Li, Xuejin Kato, Gregory J. Karniadakis, George E. Suresh, Subra Dao, Ming Proc Natl Acad Sci U S A Physical Sciences Polymerization and adhesion, dynamic processes that are hallmarks of sickle cell disease (SCD), have thus far been studied in vitro only separately. Here, we present quantitative results of the simultaneous and synergistic effects of adhesion and polymerization of deoxygenated sickle hemoglobin (HbS) in the human red blood cell (RBC) on the mechanisms underlying vasoocclusive pain crisis. For this purpose, we employ a specially developed hypoxic microfluidic platform, which is capable of inducing sickling and unsickling of RBCs in vitro, to test blood samples from eight patients with SCD. We supplemented these experimental results with detailed molecular-level computational simulations of cytoadherence and biorheology using dissipative particle dynamics. By recourse to image analysis techniques, we characterize sickle RBC maturation stages in the following order of the degree of adhesion susceptibility under hypoxia: sickle reticulocytes in circulation (SRs) → sickle mature erythrocytes (SMEs) → irreversibly sickled cells (ISCs). We show that (i) hypoxia significantly enhances sickle RBC adherence; (ii) HbS polymerization enhances sickle cell adherence in SRs and SMEs, but not in ISCs; (iii) SRs exhibit unique adhesion dynamics where HbS fiber projections growing outward from the cell surface create multiple sites of adhesion; and (iv) polymerization stimulates adhesion and vice versa, thereby establishing the bidirectional coupling between the two processes. These findings offer insights into possible mechanistic pathways leading to vasoocclusion crisis. They also elucidate the processes underlying the onset of occlusion that may involve circulating reticulocytes, which are more abundant in hemolytic anemias due to robust compensatory erythropoiesis. National Academy of Sciences 2018-09-18 2018-09-06 /pmc/articles/PMC6156668/ /pubmed/30190429 http://dx.doi.org/10.1073/pnas.1807405115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Papageorgiou, Dimitrios P.
Abidi, Sabia Z.
Chang, Hung-Yu
Li, Xuejin
Kato, Gregory J.
Karniadakis, George E.
Suresh, Subra
Dao, Ming
Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
title Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
title_full Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
title_fullStr Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
title_full_unstemmed Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
title_short Simultaneous polymerization and adhesion under hypoxia in sickle cell disease
title_sort simultaneous polymerization and adhesion under hypoxia in sickle cell disease
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156668/
https://www.ncbi.nlm.nih.gov/pubmed/30190429
http://dx.doi.org/10.1073/pnas.1807405115
work_keys_str_mv AT papageorgioudimitriosp simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT abidisabiaz simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT changhungyu simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT lixuejin simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT katogregoryj simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT karniadakisgeorgee simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT sureshsubra simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease
AT daoming simultaneouspolymerizationandadhesionunderhypoxiainsicklecelldisease