Cargando…

AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A

Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including ‘Dynamic Organellar Maps’, to find proteins whose su...

Descripción completa

Detalles Bibliográficos
Autores principales: Davies, Alexandra K., Itzhak, Daniel N., Edgar, James R., Archuleta, Tara L., Hirst, Jennifer, Jackson, Lauren P., Robinson, Margaret S., Borner, Georg H. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160451/
https://www.ncbi.nlm.nih.gov/pubmed/30262884
http://dx.doi.org/10.1038/s41467-018-06172-7
_version_ 1783358768212344832
author Davies, Alexandra K.
Itzhak, Daniel N.
Edgar, James R.
Archuleta, Tara L.
Hirst, Jennifer
Jackson, Lauren P.
Robinson, Margaret S.
Borner, Georg H. H.
author_facet Davies, Alexandra K.
Itzhak, Daniel N.
Edgar, James R.
Archuleta, Tara L.
Hirst, Jennifer
Jackson, Lauren P.
Robinson, Margaret S.
Borner, Georg H. H.
author_sort Davies, Alexandra K.
collection PubMed
description Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including ‘Dynamic Organellar Maps’, to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the “ATG9A reservoir” required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.
format Online
Article
Text
id pubmed-6160451
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61604512018-10-01 AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A Davies, Alexandra K. Itzhak, Daniel N. Edgar, James R. Archuleta, Tara L. Hirst, Jennifer Jackson, Lauren P. Robinson, Margaret S. Borner, Georg H. H. Nat Commun Article Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including ‘Dynamic Organellar Maps’, to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the “ATG9A reservoir” required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy. Nature Publishing Group UK 2018-09-27 /pmc/articles/PMC6160451/ /pubmed/30262884 http://dx.doi.org/10.1038/s41467-018-06172-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Davies, Alexandra K.
Itzhak, Daniel N.
Edgar, James R.
Archuleta, Tara L.
Hirst, Jennifer
Jackson, Lauren P.
Robinson, Margaret S.
Borner, Georg H. H.
AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A
title AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A
title_full AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A
title_fullStr AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A
title_full_unstemmed AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A
title_short AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A
title_sort ap-4 vesicles contribute to spatial control of autophagy via rusc-dependent peripheral delivery of atg9a
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160451/
https://www.ncbi.nlm.nih.gov/pubmed/30262884
http://dx.doi.org/10.1038/s41467-018-06172-7
work_keys_str_mv AT daviesalexandrak ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT itzhakdanieln ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT edgarjamesr ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT archuletataral ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT hirstjennifer ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT jacksonlaurenp ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT robinsonmargarets ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a
AT bornergeorghh ap4vesiclescontributetospatialcontrolofautophagyviaruscdependentperipheraldeliveryofatg9a