Cargando…

Development and Evaluation of Raloxifene-Hydrochloride-Loaded Supersaturatable SMEDDS Containing an Acidifier

Raloxifene hydrochloride (RLH) was formulated into a pH-modified supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) to increase drug solubility and dissolution rate. Optimal formulations of pH-modified S-SMEDDSs were developed by incorporating hydroxypropyl-cellulose-L as a preci...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jong-Hwa, Kim, Hak Hyung, Cho, Young Ho, Koo, Tae-Sung, Lee, Gye Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161204/
https://www.ncbi.nlm.nih.gov/pubmed/29966249
http://dx.doi.org/10.3390/pharmaceutics10030078
Descripción
Sumario:Raloxifene hydrochloride (RLH) was formulated into a pH-modified supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) to increase drug solubility and dissolution rate. Optimal formulations of pH-modified S-SMEDDSs were developed by incorporating hydroxypropyl-cellulose-L as a precipitation inhibitor and phosphoric acid as a pH modifier (an acidifier). RLH was dissolved to greater extents by all pH-modified S-SMEDDSs compared with non-pH-modified S-SMEDDSs. In particular, phosphoric acid afforded greater drug dissolution than did the other acidifiers tested, perhaps because phosphoric acid better controlled the pH. More than 50% of the RLH was released from the pH-modified S-SMEDDS at pH 2.5 compared with only ~5% of the drug into aqueous buffer (pH 1.2 or 6.8) after dissolution of a conventional tablet. pH-modified S-SMEDDSs with a hydrophilic polymer and phosphoric acid improved the dissolution behavior of a drug exhibiting poor aqueous solubility.