Cargando…

Design of a Novel Six-Axis Wrist Force Sensor

A novel elastic body design idea of six-axis wrist force sensor with a floating beam was raised based on the analysis of the robot six-axis wrist force sensor with a floating beam. The design ideas improve the sensor’s dynamic performance significantly, while not reducing its sensitivity. First, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Shanshan, Wang, Huaiyang, Wang, Yong, Liu, Zhengshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164245/
https://www.ncbi.nlm.nih.gov/pubmed/30223599
http://dx.doi.org/10.3390/s18093120
Descripción
Sumario:A novel elastic body design idea of six-axis wrist force sensor with a floating beam was raised based on the analysis of the robot six-axis wrist force sensor with a floating beam. The design ideas improve the sensor’s dynamic performance significantly, while not reducing its sensitivity. First, the design ideas were described in detail, which were analyzed by mechanical modeling and were verified by finite element analysis. Second, the static simulation analysis of the novel elastomer of sensor was carried out. According to the strain distribution performance, the position of the strain gauges pasted and the connection mode of the full-bridge circuits were decided, which can achieve theoretical decoupling. Finally, the comparison between the static and dynamic performance of the novel sensor and the original sensor with floating beams was done. The results show that the static and dynamic performance of the novel six-axis wrist sensor are all better than the original sensor.