Cargando…

KChIP3 coupled to Ca(2+) oscillations exerts a tonic brake on baseline mucin release in the colon

Regulated mucin secretion from specialized goblet cells by exogenous agonist-dependent (stimulated) and -independent (baseline) manner is essential for the function of the epithelial lining. Over extended periods, baseline release of mucin can exceed quantities released by stimulated secretion, yet...

Descripción completa

Detalles Bibliográficos
Autores principales: Cantero-Recasens, Gerard, Butnaru, Cristian M, Valverde, Miguel A, Naranjo, José R, Brouwers, Nathalie, Malhotra, Vivek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167051/
https://www.ncbi.nlm.nih.gov/pubmed/30272559
http://dx.doi.org/10.7554/eLife.39729
Descripción
Sumario:Regulated mucin secretion from specialized goblet cells by exogenous agonist-dependent (stimulated) and -independent (baseline) manner is essential for the function of the epithelial lining. Over extended periods, baseline release of mucin can exceed quantities released by stimulated secretion, yet its regulation remains poorly characterized. We have discovered that ryanodine receptor-dependent intracellular Ca(2+) oscillations effect the dissociation of the Ca(2+)-binding protein, KChIP3, encoded by KCNIP3 gene, from mature mucin-filled secretory granules, allowing for their exocytosis. Increased Ca(2+) oscillations, or depleting KChIP3, lead to mucin hypersecretion in a human differentiated colonic cell line, an effect reproduced in the colon of Kcnip3(-/-) mice. Conversely, overexpressing KChIP3 or abrogating its Ca(2+)-sensing ability, increases KChIP3 association with granules, and inhibits baseline secretion. KChIP3 therefore emerges as the high-affinity Ca(2+) sensor that negatively regulates baseline mucin secretion. We suggest KChIP3 marks mature, primed mucin granules, and functions as a Ca(2+) oscillation-dependent brake to control baseline secretion. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).