Cargando…
Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells
[Image: see text] Förster resonance energy transfer (FRET)-based sensors are a valuable tool to quantify cell biology, yet it remains necessary to identify and prevent potential artifacts in order to exploit their full potential. We show here that artifacts arising from slow donor mCerulean3 maturat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167724/ https://www.ncbi.nlm.nih.gov/pubmed/30168711 http://dx.doi.org/10.1021/acssensors.8b00473 |
_version_ | 1783360248338186240 |
---|---|
author | Liu, Boqun Mavrova, Sara N. van den Berg, Jonas Kristensen, Sebastian K. Mantovanelli, Luca Veenhoff, Liesbeth M. Poolman, Bert Boersma, Arnold J. |
author_facet | Liu, Boqun Mavrova, Sara N. van den Berg, Jonas Kristensen, Sebastian K. Mantovanelli, Luca Veenhoff, Liesbeth M. Poolman, Bert Boersma, Arnold J. |
author_sort | Liu, Boqun |
collection | PubMed |
description | [Image: see text] Förster resonance energy transfer (FRET)-based sensors are a valuable tool to quantify cell biology, yet it remains necessary to identify and prevent potential artifacts in order to exploit their full potential. We show here that artifacts arising from slow donor mCerulean3 maturation can be substantially diminished by constitutive expression in both prokaryotic and eukaryotic cells, which can also be achieved by incorporation of faster-maturing FRET donors. We developed an improved version of the donor mTurquoise2 that matures faster than the parent protein. Our analysis shows that using equal maturing fluorophores in FRET-based sensors or using constitutive low expression conditions helps to reduce maturation-induced artifacts, without the need of additional noise-inducing spectral corrections. In general, we show that monitoring and controlling the maturation of fluorescent proteins in living cells is important and should be addressed in in vivo applications of genetically encoded FRET sensors. |
format | Online Article Text |
id | pubmed-6167724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61677242018-10-10 Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells Liu, Boqun Mavrova, Sara N. van den Berg, Jonas Kristensen, Sebastian K. Mantovanelli, Luca Veenhoff, Liesbeth M. Poolman, Bert Boersma, Arnold J. ACS Sens [Image: see text] Förster resonance energy transfer (FRET)-based sensors are a valuable tool to quantify cell biology, yet it remains necessary to identify and prevent potential artifacts in order to exploit their full potential. We show here that artifacts arising from slow donor mCerulean3 maturation can be substantially diminished by constitutive expression in both prokaryotic and eukaryotic cells, which can also be achieved by incorporation of faster-maturing FRET donors. We developed an improved version of the donor mTurquoise2 that matures faster than the parent protein. Our analysis shows that using equal maturing fluorophores in FRET-based sensors or using constitutive low expression conditions helps to reduce maturation-induced artifacts, without the need of additional noise-inducing spectral corrections. In general, we show that monitoring and controlling the maturation of fluorescent proteins in living cells is important and should be addressed in in vivo applications of genetically encoded FRET sensors. American Chemical Society 2018-08-31 2018-09-28 /pmc/articles/PMC6167724/ /pubmed/30168711 http://dx.doi.org/10.1021/acssensors.8b00473 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Liu, Boqun Mavrova, Sara N. van den Berg, Jonas Kristensen, Sebastian K. Mantovanelli, Luca Veenhoff, Liesbeth M. Poolman, Bert Boersma, Arnold J. Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells |
title | Influence of Fluorescent Protein Maturation on FRET
Measurements in Living Cells |
title_full | Influence of Fluorescent Protein Maturation on FRET
Measurements in Living Cells |
title_fullStr | Influence of Fluorescent Protein Maturation on FRET
Measurements in Living Cells |
title_full_unstemmed | Influence of Fluorescent Protein Maturation on FRET
Measurements in Living Cells |
title_short | Influence of Fluorescent Protein Maturation on FRET
Measurements in Living Cells |
title_sort | influence of fluorescent protein maturation on fret
measurements in living cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167724/ https://www.ncbi.nlm.nih.gov/pubmed/30168711 http://dx.doi.org/10.1021/acssensors.8b00473 |
work_keys_str_mv | AT liuboqun influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT mavrovasaran influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT vandenbergjonas influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT kristensensebastiank influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT mantovanelliluca influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT veenhoffliesbethm influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT poolmanbert influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells AT boersmaarnoldj influenceoffluorescentproteinmaturationonfretmeasurementsinlivingcells |