Cargando…

Mononuclear cell transcriptome changes associated with dimethyl fumarate in MS

OBJECTIVE: To identify short-term changes in gene expression in peripheral blood mononuclear cells (PBMCs) associated with treatment response to dimethyl fumarate (DMF, Tecfidera) in patients with relapsing-remitting MS (RRMS). METHODS: Blood samples were collected from 24 patients with RRMS (median...

Descripción completa

Detalles Bibliográficos
Autores principales: Gafson, Arie R., Kim, Kicheol, Cencioni, Maria T., van Hecke, Wim, Nicholas, Richard, Baranzini, Sergio E., Matthews, Paul M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168332/
https://www.ncbi.nlm.nih.gov/pubmed/30283812
http://dx.doi.org/10.1212/NXI.0000000000000470
Descripción
Sumario:OBJECTIVE: To identify short-term changes in gene expression in peripheral blood mononuclear cells (PBMCs) associated with treatment response to dimethyl fumarate (DMF, Tecfidera) in patients with relapsing-remitting MS (RRMS). METHODS: Blood samples were collected from 24 patients with RRMS (median Expanded Disability Status Scale score, 2.0; range 1–7) at baseline, 6 weeks, and 15 months after the initiation of treatment with DMF (BG-12; Tecfidera). Seven healthy controls were also recruited, and blood samples were collected over the same time intervals. PBMCs were extracted from blood samples and sequenced using next-generation RNA sequencing. Treatment responders were defined using the composite outcome measure “no evidence of disease activity” (NEDA-4). Time-course and cross-sectional differential expression analyses were performed to identify transcriptomic markers of treatment response. RESULTS: Treatment responders (NEDA-4 positive, 8/24) over the 15-month period had 478 differentially expressed genes (DEGs) 6 weeks after the start of treatment. These were enriched for nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inhibition of nuclear factor κB (NFκB) pathway transcripts. For patients who showed signs of disease activity, there were no DEGs at 6 weeks relative to their (untreated) baseline. Contrasting transcriptomes expressed at 6 weeks with those at 15 months of treatment, 0 and 1,264 DEGs were found in the responder and nonresponder groups, respectively. Transcripts in the nonresponder group (NEDA-4 negative, 18/24) were enriched for T-cell signaling genes. CONCLUSION: Short-term PBMC transcriptome changes reflecting activation of the Nrf2 and inhibition of NFκB pathways distinguish patients who subsequently show a medium-term treatment response with DMF. Relative stabilization of gene expression patterns may accompany treatment-associated suppression of disease activity.