Cargando…

Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel

Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear due to lack of resting state structures and robust methods to identify allosteric pathway...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Mariño, Ana I., Harpole, Tyler, Oelstrom, Kevin, Delemotte, Lucie, Chanda, Baron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170002/
https://www.ncbi.nlm.nih.gov/pubmed/29581567
http://dx.doi.org/10.1038/s41594-018-0047-3
_version_ 1783360600339906560
author Fernández-Mariño, Ana I.
Harpole, Tyler
Oelstrom, Kevin
Delemotte, Lucie
Chanda, Baron
author_facet Fernández-Mariño, Ana I.
Harpole, Tyler
Oelstrom, Kevin
Delemotte, Lucie
Chanda, Baron
author_sort Fernández-Mariño, Ana I.
collection PubMed
description Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear due to lack of resting state structures and robust methods to identify allosteric pathways. Here, using a newly developed interaction energy analysis, we probe the interfaces of the voltage-sensing and pore modules in the drosophila Shaker K(+) channel. Our measurements reveal unexpectedly strong equilibrium gating interactions between contacts at the S4 and S5 helices in addition to those between S6 and S4–S5 linker. Network analysis of MD trajectories shows that the voltage-sensor and pore motions are linked by two distinct pathways- canonical one through the S4–S5 linker and a hitherto unknown pathway akin to rack and pinion coupling involving S4 and S5 helices. Our findings highlight the central role of the S5 helix in electromechanical transduction in the VGIC superfamily.
format Online
Article
Text
id pubmed-6170002
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-61700022018-10-03 Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel Fernández-Mariño, Ana I. Harpole, Tyler Oelstrom, Kevin Delemotte, Lucie Chanda, Baron Nat Struct Mol Biol Article Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear due to lack of resting state structures and robust methods to identify allosteric pathways. Here, using a newly developed interaction energy analysis, we probe the interfaces of the voltage-sensing and pore modules in the drosophila Shaker K(+) channel. Our measurements reveal unexpectedly strong equilibrium gating interactions between contacts at the S4 and S5 helices in addition to those between S6 and S4–S5 linker. Network analysis of MD trajectories shows that the voltage-sensor and pore motions are linked by two distinct pathways- canonical one through the S4–S5 linker and a hitherto unknown pathway akin to rack and pinion coupling involving S4 and S5 helices. Our findings highlight the central role of the S5 helix in electromechanical transduction in the VGIC superfamily. 2018-03-26 2018-04 /pmc/articles/PMC6170002/ /pubmed/29581567 http://dx.doi.org/10.1038/s41594-018-0047-3 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Fernández-Mariño, Ana I.
Harpole, Tyler
Oelstrom, Kevin
Delemotte, Lucie
Chanda, Baron
Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel
title Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel
title_full Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel
title_fullStr Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel
title_full_unstemmed Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel
title_short Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K(+) channel
title_sort gating interaction maps reveal a noncanonical electromechanical coupling mode in the shaker k(+) channel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170002/
https://www.ncbi.nlm.nih.gov/pubmed/29581567
http://dx.doi.org/10.1038/s41594-018-0047-3
work_keys_str_mv AT fernandezmarinoanai gatinginteractionmapsrevealanoncanonicalelectromechanicalcouplingmodeintheshakerkchannel
AT harpoletyler gatinginteractionmapsrevealanoncanonicalelectromechanicalcouplingmodeintheshakerkchannel
AT oelstromkevin gatinginteractionmapsrevealanoncanonicalelectromechanicalcouplingmodeintheshakerkchannel
AT delemottelucie gatinginteractionmapsrevealanoncanonicalelectromechanicalcouplingmodeintheshakerkchannel
AT chandabaron gatinginteractionmapsrevealanoncanonicalelectromechanicalcouplingmodeintheshakerkchannel