Cargando…
CCAAT/enhancer-binding protein-β functions as a negative regulator of Wnt/β-catenin signaling through activation of AXIN1 gene expression
Axin1, a concentration-limiting component of the β-catenin destruction complex, negatively regulates the Wnt/β-catenin pathway. Axin1 concentration is reported to be regulated by proteasomal degradation; however, its transcriptional regulation has not yet been reported. Here, we demonstrated that CC...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170413/ https://www.ncbi.nlm.nih.gov/pubmed/30283086 http://dx.doi.org/10.1038/s41419-018-1072-1 |
Sumario: | Axin1, a concentration-limiting component of the β-catenin destruction complex, negatively regulates the Wnt/β-catenin pathway. Axin1 concentration is reported to be regulated by proteasomal degradation; however, its transcriptional regulation has not yet been reported. Here, we demonstrated that CCAAT/enhancer-binding protein-β (C/EBP-β) activates axis inhibition protein 1 (AXIN1) gene expression, thereby attenuating Wnt/β-catenin signaling. C/EBP-β interacted with cis-regulatory element for C/EBP-β in the 5′-upstream sequences of the AXIN1 gene and increased AXIN1 promoter activity. Functional analysis using Drosophila and zebrafish models established that C/EBP-β negatively regulates the Wnt/β-catenin pathway. Small-molecule-based up-regulation of C/EBP-β induces AXIN1 gene expression and down-regulates the intracellular β-catenin level, thereby inhibiting hepatoma cell growth. Thus, our findings provide a unique mechanistic insight into the regulation of Axin homeostasis and present a novel strategy for the development of anticancer therapeutics targeting Wnt/β-catenin signaling. |
---|