Cargando…

Cooperative and Competitive Reinforcement and Imitation Learning for a Mixture of Heterogeneous Learning Modules

This paper proposes Cooperative and competitive Reinforcement And Imitation Learning (CRAIL) for selecting an appropriate policy from a set of multiple heterogeneous modules and training all of them in parallel. Each learning module has its own network architecture and improves the policy based on a...

Descripción completa

Detalles Bibliográficos
Autor principal: Uchibe, Eiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170616/
https://www.ncbi.nlm.nih.gov/pubmed/30319389
http://dx.doi.org/10.3389/fnbot.2018.00061