Cargando…
Effects of gene polymorphisms of metabolic enzymes on the association between red and processed meat consumption and the development of colon cancer; a literature review
The role of environmental factors and genetic susceptibility in the development of colon cancer (CC) has been already proven, but the role of gene polymorphisms in modifying the risk of environmental factors such as nutritional factors is still unknown. This study aimed to investigate the effect of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176493/ https://www.ncbi.nlm.nih.gov/pubmed/30305892 http://dx.doi.org/10.1017/jns.2018.17 |
Sumario: | The role of environmental factors and genetic susceptibility in the development of colon cancer (CC) has been already proven, but the role of gene polymorphisms in modifying the risk of environmental factors such as nutritional factors is still unknown. This study aimed to investigate the effect of polymorphisms of involved genes in the association between red meat consumption and the development of CC. The present review was carried out using keywords such as polymorphism and/or protein and/or red meat and/or processed meat and/or colon cancer. PubMed and Science Direct databases were used to collect all related articles published from 2001 to 2017. The presence of SNP in the coding genes of proteins involved in metabolism of nutrients could play significant roles in the extent of the effects of nutrition in the development of CC. The effect of dietary proteins greatly depends on the polymorphisms in the metabolising genes of these substances. Gene polymorphisms may have a role in colorectal cancer risk, especially in people with high meat intake, and this leads to a difference in the effects of meat consumption in different individuals. To conclude, dietary recommendations for the prevention and control of CC should be modified based on the genotype of different individuals. Increasing our knowledge on this field of nutritional genomics can lead to personalised preventive and therapeutic recommendations for CC patients. |
---|