Cargando…

RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice

Carotenoids of staple food crops have a high nutritional value as provitamin A components in the daily diet. To increase the levels of carotenoids, inhibition of carotenoid-cleavage dioxygenases (CCDs), which degrade carotenoids, has been considered as a promising target in crop biotechnology. In th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ko, Mi Ran, Song, Mi-Hee, Kim, Jae Kwang, Baek, Seung-A, You, Min Kyoung, Lim, Sun-Hyung, Ha, Sun-Hwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184605/
https://www.ncbi.nlm.nih.gov/pubmed/30124964
http://dx.doi.org/10.1093/jxb/ery300
_version_ 1783362731638784000
author Ko, Mi Ran
Song, Mi-Hee
Kim, Jae Kwang
Baek, Seung-A
You, Min Kyoung
Lim, Sun-Hyung
Ha, Sun-Hwa
author_facet Ko, Mi Ran
Song, Mi-Hee
Kim, Jae Kwang
Baek, Seung-A
You, Min Kyoung
Lim, Sun-Hyung
Ha, Sun-Hwa
author_sort Ko, Mi Ran
collection PubMed
description Carotenoids of staple food crops have a high nutritional value as provitamin A components in the daily diet. To increase the levels of carotenoids, inhibition of carotenoid-cleavage dioxygenases (CCDs), which degrade carotenoids, has been considered as a promising target in crop biotechnology. In this study, suppression of the OsCCD1, OsCCD4a, and OsCCD4b genes using RNAi was verified in transgenic rice plants by quantitative RT-PCR and small RNA detection. Leaf carotenoids were significantly increased overall in OsCCD4a-RNAi lines of the T(1) generation, and the highest accumulation of 1.3-fold relative to non-transgenic plants was found in a line of the T(2) generation. The effects on seed carotenoids were determined via cross-fertilization between β-carotene-producing transgenic rice and one of two independent homozygous lines of OsCCD1-RNAi, OsCCD4a-RNAi, or OsCCD4b-RNAi. This showed that carotenoids were increased to a maximum of 1.4- and 1.6-fold in OsCCD1-RNAi and OsCCD4a-RNAi, respectively, with a different preference toward α-ring and β-ring carotenoids; levels could not be established in OsCCD4b-RNAi. In addition, the contents of four carotenoids decreased when OsCCD1, OsCCD4a, and OsCCD4b were overexpressed in E. coli strains accumulating phytoene, lycopene, β-carotene, and zeaxanthin. OsCCD1 and OsCCD4a had a similar high carotenoid degrading activity, followed by OsCCD4b without substrate specificity. Overall, our results suggest that suppresing OsCCD4a activity may have potential as a tool for enhancing the carotenoid content of seed endosperms and leaves in rice.
format Online
Article
Text
id pubmed-6184605
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-61846052018-10-18 RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice Ko, Mi Ran Song, Mi-Hee Kim, Jae Kwang Baek, Seung-A You, Min Kyoung Lim, Sun-Hyung Ha, Sun-Hwa J Exp Bot Research Papers Carotenoids of staple food crops have a high nutritional value as provitamin A components in the daily diet. To increase the levels of carotenoids, inhibition of carotenoid-cleavage dioxygenases (CCDs), which degrade carotenoids, has been considered as a promising target in crop biotechnology. In this study, suppression of the OsCCD1, OsCCD4a, and OsCCD4b genes using RNAi was verified in transgenic rice plants by quantitative RT-PCR and small RNA detection. Leaf carotenoids were significantly increased overall in OsCCD4a-RNAi lines of the T(1) generation, and the highest accumulation of 1.3-fold relative to non-transgenic plants was found in a line of the T(2) generation. The effects on seed carotenoids were determined via cross-fertilization between β-carotene-producing transgenic rice and one of two independent homozygous lines of OsCCD1-RNAi, OsCCD4a-RNAi, or OsCCD4b-RNAi. This showed that carotenoids were increased to a maximum of 1.4- and 1.6-fold in OsCCD1-RNAi and OsCCD4a-RNAi, respectively, with a different preference toward α-ring and β-ring carotenoids; levels could not be established in OsCCD4b-RNAi. In addition, the contents of four carotenoids decreased when OsCCD1, OsCCD4a, and OsCCD4b were overexpressed in E. coli strains accumulating phytoene, lycopene, β-carotene, and zeaxanthin. OsCCD1 and OsCCD4a had a similar high carotenoid degrading activity, followed by OsCCD4b without substrate specificity. Overall, our results suggest that suppresing OsCCD4a activity may have potential as a tool for enhancing the carotenoid content of seed endosperms and leaves in rice. Oxford University Press 2018-10-12 2018-08-14 /pmc/articles/PMC6184605/ /pubmed/30124964 http://dx.doi.org/10.1093/jxb/ery300 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Papers
Ko, Mi Ran
Song, Mi-Hee
Kim, Jae Kwang
Baek, Seung-A
You, Min Kyoung
Lim, Sun-Hyung
Ha, Sun-Hwa
RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice
title RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice
title_full RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice
title_fullStr RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice
title_full_unstemmed RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice
title_short RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice
title_sort rnai-mediated suppression of three carotenoid-cleavage dioxygenase genes, osccd1, 4a, and 4b, increases carotenoid content in rice
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6184605/
https://www.ncbi.nlm.nih.gov/pubmed/30124964
http://dx.doi.org/10.1093/jxb/ery300
work_keys_str_mv AT komiran rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice
AT songmihee rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice
AT kimjaekwang rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice
AT baekseunga rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice
AT youminkyoung rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice
AT limsunhyung rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice
AT hasunhwa rnaimediatedsuppressionofthreecarotenoidcleavagedioxygenasegenesosccd14aand4bincreasescarotenoidcontentinrice