Cargando…

Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset

OBJECTIVE: We aimed to assess whether differences in energy metabolism in fibroblast cell lines derived from patients with Huntington disease were associated with age at onset independent of the cytosine-adenine-guanine (CAG) repeat number in the mutant allele. METHODS: For this study, we selected 9...

Descripción completa

Detalles Bibliográficos
Autores principales: Gardiner, Sarah L., Milanese, Chiara, Boogaard, Merel W., Buijsen, Ronald A.M., Hogenboom, Marye, Roos, Raymund A.C., Mastroberardino, Pier G., van Roon-Mom, Willeke M.C., Aziz, N. Ahmad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186024/
https://www.ncbi.nlm.nih.gov/pubmed/30338295
http://dx.doi.org/10.1212/NXG.0000000000000275
Descripción
Sumario:OBJECTIVE: We aimed to assess whether differences in energy metabolism in fibroblast cell lines derived from patients with Huntington disease were associated with age at onset independent of the cytosine-adenine-guanine (CAG) repeat number in the mutant allele. METHODS: For this study, we selected 9 pairs of patients with Huntington disease matched for mutant CAG repeat size and sex, but with a difference of at least 10 years in age at onset, using the Leiden Huntington disease database. From skin biopsies, we isolated fibroblasts in which we (1) quantified the ATP concentration before and after a hydrogen-peroxide challenge and (2) measured mitochondrial respiration and glycolysis in real time, using the Seahorse XF Extracellular Flux Analyzer XF24. RESULTS: The ATP concentration in fibroblasts was significantly lower in patients with Huntington disease with an earlier age at onset, independent of calendar age and disease duration. Maximal respiration, spare capacity, and respiration dependent on complex II activity, and indices of mitochondrial respiration were significantly lower in patients with Huntington disease with an earlier age at onset, again independent of calendar age and disease duration. CONCLUSIONS: A less efficient bioenergetics profile was found in fibroblast cells from patients with Huntington disease with an earlier age at onset independent of mutant CAG repeat size. Thus, differences in bioenergetics could explain part of the residual variation in age at onset in Huntington disease.