Cargando…

DC-25 GHz and Low-Loss MEMS Thermoelectric Power Sensors with Floating Thermal Slug and Reliable Back Cavity Based on GaAs MMIC Technology

Wideband and low-loss microwave power measurements are becoming increasingly important for microwave communication and radar systems. To achieve such a power measurement, this paper presents the design and measurement of wideband DC-25 GHz and low-loss MEMS thermoelectric power sensors with a floati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiqiang, Ma, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187267/
https://www.ncbi.nlm.nih.gov/pubmed/30424088
http://dx.doi.org/10.3390/mi9040154
Descripción
Sumario:Wideband and low-loss microwave power measurements are becoming increasingly important for microwave communication and radar systems. To achieve such a power measurement, this paper presents the design and measurement of wideband DC-25 GHz and low-loss MEMS thermoelectric power sensors with a floating thermal slug and a reliable back cavity. In the sensors, the microwave power is converted to thermovoltages via heat. The collaborative design of the thermal slug and the back cavity, i.e., two thermal flow paths, is utilized to improve the efficiency of heat transfer and to ensure reliable applications. These sensors are required to operate up to 25 GHz. In order to achieve low microwave losses at the bandwidth, the floating thermal slug is designed instead of the grounded one. The effects of the floating slug on the reflection losses are analyzed by the simulation. The fabrication of these sensors is completed by GaAs monolithic microwave integrated circuits (MMIC) and micro-electro-mechanical systems (MEMS) technology. Measured reflection losses are less than −25.6 dB up to 12 GHz and −18.6 dB up to 25 GHz. The design of the floating thermal slug reduces the losses, which is equivalent to improving the sensitivity. At 10 and 25 GHz, experiments exhibit that the sensors result in sensitivities of about 51.13 and 35.28 μV/mW for the floating slug and 81.68 and 55.20 μV/mW for the floating slug and the cavity.