Cargando…
Fundamental Study for a Graphite-Based Microelectromechanical System
We aimed to develop a process for constructing a carbon-based microelectromechanical system (MEMS). First, we prepared a highly oriented pyrolytic graphite (HOPG) crystal microsheet by exfoliation. We fabricated cantilevers and a double-clamped beam by controlling the thickness of the HOPG microshee...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187653/ https://www.ncbi.nlm.nih.gov/pubmed/30393340 http://dx.doi.org/10.3390/mi9020064 |
Sumario: | We aimed to develop a process for constructing a carbon-based microelectromechanical system (MEMS). First, we prepared a highly oriented pyrolytic graphite (HOPG) crystal microsheet by exfoliation. We fabricated cantilevers and a double-clamped beam by controlling the thickness of the HOPG microsheet using a MEMS process. Second, we used a graphite sheet with contour line adhesion by metal sputter deposition. Third, we used a highly accurate graphite sheet with face adhesion and laser cutting. The first resonance frequencies were evaluated. We confirmed improvement in Q values to 1/10 level of a quarts vibrator, high performance, and a simple structure. |
---|