Cargando…
Facile lipase-catalyzed synthesis of a chocolate fat mimetic
A cocoa butter equivalent (CBE) was synthesized enzymatically from readily available edible fats with fatty acid and triacylglycerol compositions that closely resemble the fat present in chocolate, cocoa butter. A commercially available immobilized fungal lipase, Lipozyme RM IM, was used as the reac...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189139/ https://www.ncbi.nlm.nih.gov/pubmed/30323241 http://dx.doi.org/10.1038/s41598-018-33600-x |
_version_ | 1783363306793205760 |
---|---|
author | Ghazani, Saeed M. Marangoni, Alejandro G. |
author_facet | Ghazani, Saeed M. Marangoni, Alejandro G. |
author_sort | Ghazani, Saeed M. |
collection | PubMed |
description | A cocoa butter equivalent (CBE) was synthesized enzymatically from readily available edible fats with fatty acid and triacylglycerol compositions that closely resemble the fat present in chocolate, cocoa butter. A commercially available immobilized fungal lipase, Lipozyme RM IM, was used as the reaction catalyst. Reaction parameters were a temperature of 65 °C, water activity of 0.11, a 4 h reaction time, and a substrate mass ratio of a commercial enzymatically synthesized shea stearin (SS) to palm mid-fraction (PMF) of 6:4 (w/w). Fractionation was also used after reaction completion to further approach the triacylglycerol composition of cocoa butter by removing trisaturated and unsaturated triacylglycerols. The yield of the triglyceride 1-palmitoyl-2-oleoyl, 3-stearoyl-glycerol (POS) produced was 57.7% (w/w). The amounts of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), (POS) and 1,3-stearoyl-2-oleoyl-glycerol (SOS) in the final CBE were 11.2%, 36.3%, and 34.8%, respectively. In comparison, the amounts of POP, POS and SOS in the cocoa butter used in this study were 15.2%, 38.2%, and 27.8%, respectively. No significant differences (P > 0.05) in melting point and enthalpy of fusion between CB and the CBE were observed. In comparison, a non-interesterified blend of SS and PMF (60:40 w/w) showed significantly (P < 0.05) higher melting point and lower enthalpy of fusion compared to CB. The crystal polymorphic form V of CB (β(2-)3L) was similar to that of CBE and SS/PMF (60:40 w/w). The solid fat content (SFC) vs. temperature profile of the CBE generally resembled that of CB, except that the CBE had significantly (P < 0.05) higher SFCs at 5, 10, 15, 20 and 25 °C compared to both CB and SS/PMF (60:40 w/w). Addition of 15% (w/w) CBE to CB did not cause any changes in physical properties (melting point, SFC and crystal polymorphic forms) of the CB. This study demonstrates the potential for synthesizing a CB-like CBE using a green, rapid, straightforward one step enzymatic conversion followed by fractionation from widely available edible fats. |
format | Online Article Text |
id | pubmed-6189139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61891392018-10-22 Facile lipase-catalyzed synthesis of a chocolate fat mimetic Ghazani, Saeed M. Marangoni, Alejandro G. Sci Rep Article A cocoa butter equivalent (CBE) was synthesized enzymatically from readily available edible fats with fatty acid and triacylglycerol compositions that closely resemble the fat present in chocolate, cocoa butter. A commercially available immobilized fungal lipase, Lipozyme RM IM, was used as the reaction catalyst. Reaction parameters were a temperature of 65 °C, water activity of 0.11, a 4 h reaction time, and a substrate mass ratio of a commercial enzymatically synthesized shea stearin (SS) to palm mid-fraction (PMF) of 6:4 (w/w). Fractionation was also used after reaction completion to further approach the triacylglycerol composition of cocoa butter by removing trisaturated and unsaturated triacylglycerols. The yield of the triglyceride 1-palmitoyl-2-oleoyl, 3-stearoyl-glycerol (POS) produced was 57.7% (w/w). The amounts of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), (POS) and 1,3-stearoyl-2-oleoyl-glycerol (SOS) in the final CBE were 11.2%, 36.3%, and 34.8%, respectively. In comparison, the amounts of POP, POS and SOS in the cocoa butter used in this study were 15.2%, 38.2%, and 27.8%, respectively. No significant differences (P > 0.05) in melting point and enthalpy of fusion between CB and the CBE were observed. In comparison, a non-interesterified blend of SS and PMF (60:40 w/w) showed significantly (P < 0.05) higher melting point and lower enthalpy of fusion compared to CB. The crystal polymorphic form V of CB (β(2-)3L) was similar to that of CBE and SS/PMF (60:40 w/w). The solid fat content (SFC) vs. temperature profile of the CBE generally resembled that of CB, except that the CBE had significantly (P < 0.05) higher SFCs at 5, 10, 15, 20 and 25 °C compared to both CB and SS/PMF (60:40 w/w). Addition of 15% (w/w) CBE to CB did not cause any changes in physical properties (melting point, SFC and crystal polymorphic forms) of the CB. This study demonstrates the potential for synthesizing a CB-like CBE using a green, rapid, straightforward one step enzymatic conversion followed by fractionation from widely available edible fats. Nature Publishing Group UK 2018-10-15 /pmc/articles/PMC6189139/ /pubmed/30323241 http://dx.doi.org/10.1038/s41598-018-33600-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ghazani, Saeed M. Marangoni, Alejandro G. Facile lipase-catalyzed synthesis of a chocolate fat mimetic |
title | Facile lipase-catalyzed synthesis of a chocolate fat mimetic |
title_full | Facile lipase-catalyzed synthesis of a chocolate fat mimetic |
title_fullStr | Facile lipase-catalyzed synthesis of a chocolate fat mimetic |
title_full_unstemmed | Facile lipase-catalyzed synthesis of a chocolate fat mimetic |
title_short | Facile lipase-catalyzed synthesis of a chocolate fat mimetic |
title_sort | facile lipase-catalyzed synthesis of a chocolate fat mimetic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189139/ https://www.ncbi.nlm.nih.gov/pubmed/30323241 http://dx.doi.org/10.1038/s41598-018-33600-x |
work_keys_str_mv | AT ghazanisaeedm facilelipasecatalyzedsynthesisofachocolatefatmimetic AT marangonialejandrog facilelipasecatalyzedsynthesisofachocolatefatmimetic |