Cargando…
Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching
We introduce a non-lithographical and vacuum-free method to pattern silicon. The method combines inkjet printing and metal assisted chemical etching (MaCE); we call this method “INKMAC”. A commercial silver ink is printed on top of a silicon surface to create the catalytic patterns for MaCE. The MaC...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189811/ https://www.ncbi.nlm.nih.gov/pubmed/30404394 http://dx.doi.org/10.3390/mi7120222 |
_version_ | 1783363436428656640 |
---|---|
author | Hoshian, Sasha Gaspar, Cristina Vasara, Teemu Jahangiri, Farzin Jokinen, Ville Franssila, Sami |
author_facet | Hoshian, Sasha Gaspar, Cristina Vasara, Teemu Jahangiri, Farzin Jokinen, Ville Franssila, Sami |
author_sort | Hoshian, Sasha |
collection | PubMed |
description | We introduce a non-lithographical and vacuum-free method to pattern silicon. The method combines inkjet printing and metal assisted chemical etching (MaCE); we call this method “INKMAC”. A commercial silver ink is printed on top of a silicon surface to create the catalytic patterns for MaCE. The MaCE process leaves behind a set of silicon nanowires in the shape of the inkjet printed micrometer scale pattern. We further show how a potassium hydroxide (KOH) wet etching process can be used to rapidly etch away the nanowires, producing fully opened cavities and channels in the shape of the original printed pattern. We show how the printed lines (width 50–100 µm) can be etched into functional silicon microfluidic channels with different depths (10–40 µm) with aspect ratios close to one. We also used individual droplets (minimum diameter 30 µm) to produce cavities with a depth of 60 µm and an aspect ratio of two. Further, we discuss using the structured silicon substrate as a template for polymer replication to produce superhydrophobic surfaces. |
format | Online Article Text |
id | pubmed-6189811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61898112018-11-01 Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching Hoshian, Sasha Gaspar, Cristina Vasara, Teemu Jahangiri, Farzin Jokinen, Ville Franssila, Sami Micromachines (Basel) Communication We introduce a non-lithographical and vacuum-free method to pattern silicon. The method combines inkjet printing and metal assisted chemical etching (MaCE); we call this method “INKMAC”. A commercial silver ink is printed on top of a silicon surface to create the catalytic patterns for MaCE. The MaCE process leaves behind a set of silicon nanowires in the shape of the inkjet printed micrometer scale pattern. We further show how a potassium hydroxide (KOH) wet etching process can be used to rapidly etch away the nanowires, producing fully opened cavities and channels in the shape of the original printed pattern. We show how the printed lines (width 50–100 µm) can be etched into functional silicon microfluidic channels with different depths (10–40 µm) with aspect ratios close to one. We also used individual droplets (minimum diameter 30 µm) to produce cavities with a depth of 60 µm and an aspect ratio of two. Further, we discuss using the structured silicon substrate as a template for polymer replication to produce superhydrophobic surfaces. MDPI 2016-12-08 /pmc/articles/PMC6189811/ /pubmed/30404394 http://dx.doi.org/10.3390/mi7120222 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Hoshian, Sasha Gaspar, Cristina Vasara, Teemu Jahangiri, Farzin Jokinen, Ville Franssila, Sami Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching |
title | Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching |
title_full | Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching |
title_fullStr | Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching |
title_full_unstemmed | Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching |
title_short | Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etching |
title_sort | non-lithographic silicon micromachining using inkjet and chemical etching |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189811/ https://www.ncbi.nlm.nih.gov/pubmed/30404394 http://dx.doi.org/10.3390/mi7120222 |
work_keys_str_mv | AT hoshiansasha nonlithographicsiliconmicromachiningusinginkjetandchemicaletching AT gasparcristina nonlithographicsiliconmicromachiningusinginkjetandchemicaletching AT vasarateemu nonlithographicsiliconmicromachiningusinginkjetandchemicaletching AT jahangirifarzin nonlithographicsiliconmicromachiningusinginkjetandchemicaletching AT jokinenville nonlithographicsiliconmicromachiningusinginkjetandchemicaletching AT franssilasami nonlithographicsiliconmicromachiningusinginkjetandchemicaletching |