Cargando…

A selenium-catalysed para-amination of phenols

Antioxidant enzyme glutathione peroxidase (GPx) decomposes hydroperoxides by utilizing the different redox chemistry of the selenium and sulfur. Here, we report a Se-catalysed para-amination of phenols while, in contrast, the reactions with sulfur donors are stoichiometric. A catalytic amount of phe...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Dingyuan, Wang, Guoqiang, Xiong, Feng, Sun, Wei-Yin, Shi, Zhuangzhi, Lu, Yi, Li, Shuhua, Zhao, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191425/
https://www.ncbi.nlm.nih.gov/pubmed/30327477
http://dx.doi.org/10.1038/s41467-018-06763-4
Descripción
Sumario:Antioxidant enzyme glutathione peroxidase (GPx) decomposes hydroperoxides by utilizing the different redox chemistry of the selenium and sulfur. Here, we report a Se-catalysed para-amination of phenols while, in contrast, the reactions with sulfur donors are stoichiometric. A catalytic amount of phenylselenyl bromide smoothly converts N-aryloxyacetamides to N-acetyl p-aminophenols. When the para position was substituted (for example, with tyrosine), the dearomatization 4,4-disubstituted cyclodienone products were obtained. A combination of experimental and computational studies was conducted and suggested the weaker Se−N bond plays a key role in the completion of the catalytic cycle. Our method extends the selenium-catalysed processes to the functionalisation of aromatic compounds. Finally, we demonstrated the mild nature of the para-amination reaction by generating an AIEgen 2-(2′-hydroxyphenyl)benzothiazole (HBT) product in a fluorogenic fashion in a PBS buffer.