Cargando…
PD-1 deficiency is not sufficient to induce myeloid mobilization to the brain or alter the inflammatory profile during chronic neurodegeneration
Innate immune activation is a major driver of neurodegenerative disease and immune regulatory pathways could be potential targets for therapeutic intervention. Recently, Programmed cell death-1 (PD-1) immune checkpoint inhibition has been proposed to mount an IFN-γ-dependent systemic immune response...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191933/ https://www.ncbi.nlm.nih.gov/pubmed/30086399 http://dx.doi.org/10.1016/j.bbi.2018.08.006 |
Sumario: | Innate immune activation is a major driver of neurodegenerative disease and immune regulatory pathways could be potential targets for therapeutic intervention. Recently, Programmed cell death-1 (PD-1) immune checkpoint inhibition has been proposed to mount an IFN-γ-dependent systemic immune response, leading to the recruitment of peripheral myeloid cells to the brain and neuropathological and functional improvements in mice with Alzheimer’s disease-like β-amyloid pathology. Here we investigate the impact of PD-1 deficiency on murine prion disease (ME7 strain), a model of chronic neurodegeneration. Although PD-1 was found to be increased in the brain of prion mice, the absence of PD-1 did not cause myeloid cell infiltration into the brain or major changes in the inflammatory profile. However, we observed a slight exacerbation of the behavioural phenotype of ME7 mice upon PD-1 deficiency. These results do not support the possibility of using immune checkpoint blockade as a therapeutic strategy in neurodegenerative disease. |
---|