Cargando…

TMEM106B, a risk factor for FTLD and aging, has an intrinsically disordered cytoplasmic domain

TMEM106B was initially identified as a risk factor for FTLD, but recent studies highlighted its general role in neurodegenerative diseases. Very recently TMEM106B has also been characterized to regulate aging phenotypes. TMEM106B is a 274-residue lysosomal protein whose cytoplasmic domain functions...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jian, Lim, Liangzhong, Song, Jianxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192649/
https://www.ncbi.nlm.nih.gov/pubmed/30332472
http://dx.doi.org/10.1371/journal.pone.0205856
Descripción
Sumario:TMEM106B was initially identified as a risk factor for FTLD, but recent studies highlighted its general role in neurodegenerative diseases. Very recently TMEM106B has also been characterized to regulate aging phenotypes. TMEM106B is a 274-residue lysosomal protein whose cytoplasmic domain functions in the endosomal/autophagy pathway by dynamically and transiently interacting with diverse categories of proteins but the underlying structural basis remains completely unknown. Here we conducted bioinformatics analysis and biophysical characterization by CD and NMR spectroscopy, and obtained results reveal that the TMEM106B cytoplasmic domain is intrinsically disordered with no well-defined three-dimensional structure. Nevertheless, detailed analysis of various multi-dimensional NMR spectra allowed defining residue-specific conformations and dynamics. Overall, the TMEM106B cytoplasmic domain is lacking of any tight tertiary packing and relatively flexible. However, several segments are populated with dynamic/nascent secondary structures and have relatively restricted backbone motions on ps-ns time scale, as indicated by their positive {(1)H}-(15)N steady-state NOE. Our study thus decodes that being intrinsically disordered may allow the TMEM106B cytoplasmic domain to dynamically and transiently interact with a variety of distinct partners.