Cargando…

Identification of growth-coupled production strains considering protein costs and kinetic variability

Conversion of renewable biomass to useful molecules in microbial cell factories can be approached in a rational and systematic manner using constraint-based reconstruction and analysis. Filtering for high confidence in silico designs is critical because in vivo construction and testing of strains is...

Descripción completa

Detalles Bibliográficos
Autores principales: Dinh, Hoang V., King, Zachary A., Palsson, Bernhard O., Feist, Adam M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199775/
https://www.ncbi.nlm.nih.gov/pubmed/30370222
http://dx.doi.org/10.1016/j.mec.2018.e00080
Descripción
Sumario:Conversion of renewable biomass to useful molecules in microbial cell factories can be approached in a rational and systematic manner using constraint-based reconstruction and analysis. Filtering for high confidence in silico designs is critical because in vivo construction and testing of strains is expensive and time consuming. As such, a workflow was devised to analyze the robustness of growth-coupled production when considering the biosynthetic costs of the proteome and variability in enzyme kinetic parameters using a genome-scale model of metabolism and gene expression (ME-model). A collection of 2632 unfiltered knockout designs in Escherichia coli was evaluated by the workflow. A ME-model was used in the workflow to test the designs’ growth-coupled production in addition to a less complex genome-scale metabolic model (M-model). The workflow identified 634 M-model growth-coupled designs which met the filtering criteria and 42 robust designs, which met growth-coupled production criteria using both M and ME-models. Knockouts were found to follow a pattern of controlling intermediate metabolite consumption such as pyruvate consumption and high flux subsystems such as glycolysis. Kinetic parameter sampling using the ME-model revealed how enzyme efficiency and pathway tradeoffs can affect growth-coupled production phenotypes.