Cargando…
Discovery of proteins associated with a predefined genomic locus in living cells via dCAS9-APEX-mediated proximity labeling
Regulation of gene expression is primarily controlled by changes in the proteins that occupy their regulatory elements. Chromatin immunoprecipitation can confirm a protein’s occupancy at a genomic locus but requires specific, high-quality, IP-competent antibodies against nominated proteins, limiting...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202184/ https://www.ncbi.nlm.nih.gov/pubmed/29735997 http://dx.doi.org/10.1038/s41592-018-0007-1 |
Sumario: | Regulation of gene expression is primarily controlled by changes in the proteins that occupy their regulatory elements. Chromatin immunoprecipitation can confirm a protein’s occupancy at a genomic locus but requires specific, high-quality, IP-competent antibodies against nominated proteins, limiting its utility. Here, we combine, genome targeting, proximity labeling, and quantitative proteomics to develop genomic locus proteomics, a method able to identify proteins associated a specific genomic locus in native cellular contexts. |
---|