Cargando…
Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE
Systemic lupus erythematosus (SLE) is a manifestation of hyperactivated lymphocytes and results, in part, from the loss of normal tolerance checkpoints. FOXO1 is a transcription factor involved at critical early and late B cell development checkpoints; however, its role in regulating peripheral B ce...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203050/ https://www.ncbi.nlm.nih.gov/pubmed/30397498 http://dx.doi.org/10.1136/lupus-2018-000296 |
_version_ | 1783365802928373760 |
---|---|
author | Hritzo Ahye, Molly K Golding, Amit |
author_facet | Hritzo Ahye, Molly K Golding, Amit |
author_sort | Hritzo Ahye, Molly K |
collection | PubMed |
description | Systemic lupus erythematosus (SLE) is a manifestation of hyperactivated lymphocytes and results, in part, from the loss of normal tolerance checkpoints. FOXO1 is a transcription factor involved at critical early and late B cell development checkpoints; however, its role in regulating peripheral B cell tolerance is not fully understood. We have applied our published approach for using imaging flow cytometry to study native FOXO1 localisation in human lymphocytes to peripheral blood samples from healthy individuals versus patients with SLE. We report, here, on dramatic cytoplasmic localisation of FOXO1 in two peripheral B cell SLE subsets: IgD-CD27+ (class-switched memory) B cells and IgD-CD27- (atypical memory) B cells. The latter, so-called ‘Double Negative’ (DN) B cells have previously been shown to be increased in SLE and enriched in autoreactive clones. Cytoplasmic-predominant FOXO1 (CytoFOX) B cells are significantly increased in patients with SLE as compared to healthy controls, and the levels of CytoFoOX DN B cells correlate directly with SLE disease activity. The highest abundance of CytoFox DN B cells was observed in African American females with SLE Disease Activity Index (SLEDAI)≥6. The phenotype of CytoFOX DN B cells in SLE includes uniquely low CD20 expression and high granularity/side scatter. As FOXO1 phosphorylation downstream of B cell receptor-dependent signalling is required for nuclear exclusion, CytoFOX B cells likely represent a high state of B cell activation with excess signalling and/or loss of phosphatase activity. We hypothesise that CytoFOX B cells in lupus represent a novel biomarker for the expansion of pathological, autoreactive B cells which may provide new insights into the pathophysiology of SLE. |
format | Online Article Text |
id | pubmed-6203050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-62030502018-11-05 Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE Hritzo Ahye, Molly K Golding, Amit Lupus Sci Med Brief Communication Systemic lupus erythematosus (SLE) is a manifestation of hyperactivated lymphocytes and results, in part, from the loss of normal tolerance checkpoints. FOXO1 is a transcription factor involved at critical early and late B cell development checkpoints; however, its role in regulating peripheral B cell tolerance is not fully understood. We have applied our published approach for using imaging flow cytometry to study native FOXO1 localisation in human lymphocytes to peripheral blood samples from healthy individuals versus patients with SLE. We report, here, on dramatic cytoplasmic localisation of FOXO1 in two peripheral B cell SLE subsets: IgD-CD27+ (class-switched memory) B cells and IgD-CD27- (atypical memory) B cells. The latter, so-called ‘Double Negative’ (DN) B cells have previously been shown to be increased in SLE and enriched in autoreactive clones. Cytoplasmic-predominant FOXO1 (CytoFOX) B cells are significantly increased in patients with SLE as compared to healthy controls, and the levels of CytoFoOX DN B cells correlate directly with SLE disease activity. The highest abundance of CytoFox DN B cells was observed in African American females with SLE Disease Activity Index (SLEDAI)≥6. The phenotype of CytoFOX DN B cells in SLE includes uniquely low CD20 expression and high granularity/side scatter. As FOXO1 phosphorylation downstream of B cell receptor-dependent signalling is required for nuclear exclusion, CytoFOX B cells likely represent a high state of B cell activation with excess signalling and/or loss of phosphatase activity. We hypothesise that CytoFOX B cells in lupus represent a novel biomarker for the expansion of pathological, autoreactive B cells which may provide new insights into the pathophysiology of SLE. BMJ Publishing Group 2018-10-24 /pmc/articles/PMC6203050/ /pubmed/30397498 http://dx.doi.org/10.1136/lupus-2018-000296 Text en © Author(s) (or their employer(s)) 2018. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ |
spellingShingle | Brief Communication Hritzo Ahye, Molly K Golding, Amit Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE |
title | Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE |
title_full | Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE |
title_fullStr | Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE |
title_full_unstemmed | Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE |
title_short | Cytoplasmic FOXO1 identifies a novel disease-activity associated B cell phenotype in SLE |
title_sort | cytoplasmic foxo1 identifies a novel disease-activity associated b cell phenotype in sle |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203050/ https://www.ncbi.nlm.nih.gov/pubmed/30397498 http://dx.doi.org/10.1136/lupus-2018-000296 |
work_keys_str_mv | AT hritzoahyemollyk cytoplasmicfoxo1identifiesanoveldiseaseactivityassociatedbcellphenotypeinsle AT goldingamit cytoplasmicfoxo1identifiesanoveldiseaseactivityassociatedbcellphenotypeinsle |