Cargando…

Central Dicer-miR-103/107 controls developmental switch of POMC progenitors into NPY neurons and impacts glucose homeostasis

Proopiomelanocortin (POMC) neurons are major negative regulators of energy balance. A distinct developmental property of POMC neurons is that they can adopt an orexigenic neuropeptide Y (NPY) phenotype. However, the mechanisms underlying the differentiation of Pomc progenitors remain unknown. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Croizier, Sophie, Park, Soyoung, Maillard, Julien, Bouret, Sebastien G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6203430/
https://www.ncbi.nlm.nih.gov/pubmed/30311908
http://dx.doi.org/10.7554/eLife.40429
Descripción
Sumario:Proopiomelanocortin (POMC) neurons are major negative regulators of energy balance. A distinct developmental property of POMC neurons is that they can adopt an orexigenic neuropeptide Y (NPY) phenotype. However, the mechanisms underlying the differentiation of Pomc progenitors remain unknown. Here, we show that the loss of the microRNA (miRNA)-processing enzyme Dicer in POMC neurons causes metabolic defects, an age-dependent decline in the number of PomcmRNA-expressing cells, and an increased proportion of Pomc progenitors acquiring a NPY phenotype. miRNome microarray screening further identified miR-103/107 as candidates that may be involved in the maturation of Pomc progenitors. In vitro inhibition of miR-103/107 causes a reduction in the number of Pomc-expressing cells and increases the proportion of Pomc progenitors differentiating into NPY neurons. Moreover, in utero silencing of miR-103/107 causes perturbations in glucose homeostasis. Together, these data suggest a role for prenatal miR-103/107 in the maturation of Pomc progenitors and glucose homeostasis.