Cargando…
Kernel Entropy Component Analysis with Nongreedy L1-Norm Maximization
Kernel entropy component analysis (KECA) is a newly proposed dimensionality reduction (DR) method, which has showed superiority in many pattern analysis issues previously solved by principal component analysis (PCA). The optimized KECA (OKECA) is a state-of-the-art variant of KECA and can return pro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204191/ https://www.ncbi.nlm.nih.gov/pubmed/30405708 http://dx.doi.org/10.1155/2018/6791683 |