Cargando…
Kernel Entropy Component Analysis with Nongreedy L1-Norm Maximization
Kernel entropy component analysis (KECA) is a newly proposed dimensionality reduction (DR) method, which has showed superiority in many pattern analysis issues previously solved by principal component analysis (PCA). The optimized KECA (OKECA) is a state-of-the-art variant of KECA and can return pro...
Autores principales: | Ji, Haijin, Huang, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204191/ https://www.ncbi.nlm.nih.gov/pubmed/30405708 http://dx.doi.org/10.1155/2018/6791683 |
Ejemplares similares
-
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017) -
Research on Recognition Method of Driving Fatigue State Based on Sample Entropy and Kernel Principal Component Analysis
por: Ye, Beige, et al.
Publicado: (2018) -
L(2)-norm multiple kernel learning and its application to biomedical data fusion
por: Yu, Shi, et al.
Publicado: (2010) -
A Multiple Kernel Learning Model Based on p-Norm
por: Qi, Jinshan, et al.
Publicado: (2018) -
R-Norm Entropy and R-Norm Divergence in Fuzzy Probability Spaces
por: Markechová, Dagmar, et al.
Publicado: (2018)