Cargando…
Learning Inverse Statics Models Efficiently With Symmetry-Based Exploration
Learning (inverse) kinematics and dynamics models of dexterous robots for the entire action or observation space is challenging and costly. Sampling the entire space is usually intractable in terms of time, tear, and wear. We propose an efficient approach to learn inverse statics models—primarily fo...
Autores principales: | Rayyes, Rania, Kubus, Daniel, Steil, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206748/ https://www.ncbi.nlm.nih.gov/pubmed/30405387 http://dx.doi.org/10.3389/fnbot.2018.00068 |
Ejemplares similares
-
InverseMuscleNET: Alternative Machine Learning Solution to Static Optimization and Inverse Muscle Modeling
por: Nasr, Ali, et al.
Publicado: (2021) -
Intrinsic motivation learning for real robot applications
por: Rayyes, Rania
Publicado: (2023) -
Static cylindrical symmetry and conformal flatness
por: Herrera, L, et al.
Publicado: (2004) -
Emergence of Lie Symmetries in Functional Architectures Learned by CNNs
por: Bertoni, Federico, et al.
Publicado: (2021) -
Learning from data to design functional materials without inversion symmetry
por: Balachandran, Prasanna V., et al.
Publicado: (2017)